Document

# On Planar Greedy Drawings of 3-Connected Planar Graphs

## File

LIPIcs.SoCG.2017.33.pdf
• Filesize: 1 MB
• 16 pages

## Cite As

Giordano Da Lozzo, Anthony D'Angelo, and Fabrizio Frati. On Planar Greedy Drawings of 3-Connected Planar Graphs. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.SoCG.2017.33

## Abstract

A graph drawing is greedy if, for every ordered pair of vertices (x,y), there is a path from x to y such that the Euclidean distance to y decreases monotonically at every vertex of the path. Greedy drawings support a simple geometric routing scheme, in which any node that has to send a packet to a destination "greedily" forwards the packet to any neighbor that is closer to the destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing such a neighbor always exists and hence this routing scheme is guaranteed to succeed. In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing. The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy embedding conjecture was settled in the positive by Leighton and Moitra. In this paper we prove that every 3-connected planar graph admits a planar greedy drawing. Apart from being a strengthening of Leighton and Moitra's result, this theorem constitutes a natural intermediate step towards a proof of the convex greedy embedding conjecture.
##### Keywords
• Greedy drawings
• 3-connectivity
• planar graphs
• convex drawings

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. S. Alamdari, T. M. Chan, E. Grant, A. Lubiw, and V. Pathak. Self-approaching graphs. In Didimo and Patrignani, editors, GD, volume 7704 of LNCS, pages 260-271, 2012.
2. P. Angelini, G. Di Battista, and F. Frati. Succinct greedy drawings do not always exist. Networks, 59(3):267-274, 2012.
3. P. Angelini, E. Colasante, G. Di Battista, F. Frati, and M. Patrignani. Monotone drawings of graphs. J. Graph Algorithms Appl., 16(1):5-35, 2012.
4. P. Angelini, F. Frati, and L. Grilli. An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl., 14(1):19-51, 2010.
5. D. Barnette. Trees in polyhedral graphs. Canadian J. Math., 18:731-736, 1966.
6. P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609-616, 2001.
7. G. Chen and X. Yu. Long cycles in 3-connected graphs. J. Comb. Theory, Ser. B, 86(1):80-99, 2002.
8. G. Da Lozzo, A. D'Angelo, and F. Frati. On planar greedy drawings of 3-connected planar graphs. CoRR, 2016. URL: http://arxiv.org/abs/1612.09277.
9. G. Da Lozzo, V. Dujmović, F. Frati, T. Mchedlidze, and V. Roselli. Drawing planar graphs with many collinear vertices. In Hu and Nöllenburg, editors, GD, volume 9801 of LNCS, pages 152-165, 2016.
10. H. R. Dehkordi, F. Frati, and J. Gudmundsson. Increasing-chord graphs on point sets. J. Graph Algorithms Appl., 19(2):761-778, 2015.
11. R. Dhandapani. Greedy drawings of triangulations. Discr. Comp. Geom., 43(2):375-392, 2010.
12. G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci., 61:175-198, 1988.
13. D. Eppstein and M. T. Goodrich. Succinct greedy geometric routing using hyperbolic geometry. IEEE Trans. Computers, 60(11):1571-1580, 2011.
14. S. Felsner, A. Igamberdiev, P. Kindermann, B. Klemz, T. Mchedlidze, and M. Scheucher. Strongly monotone drawings of planar graphs. In Fekete and Lubiw, editors, SoCG, volume 51 of LIPIcs, pages 37:1-37:15, 2016.
15. H. Frey, S. Rührup, and I. Stojmenović. Routing in wireless sensor networks. In Misra, Woungang, and Misra, editors, Guide to Wireless Sensor Networks, Computer Communications and Networks, chapter 4, pages 81-111. Springer, 2009.
16. M. T. Goodrich and D. Strash. Succinct greedy geometric routing in the Euclidean plane. In Dong, Du, and Ibarra, editors, ISAAC, volume 5878 of LNCS, pages 781-791, 2009.
17. X. He and H. Zhang. On succinct greedy drawings of plane triangulations and 3-connected plane graphs. Algorithmica, 68(2):531-544, 2014.
18. P. Kindermann, A. Schulz, J. Spoerhase, and A. Wolff. On monotone drawings of trees. In Duncan and Symvonis, editors, GD, volume 8871 of LNCS, pages 488-500, 2014.
19. E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In CCCG, 1999. URL: http://www.cccg.ca/proceedings/1999/c46.pdf.
20. F. Kuhn, R. Wattenhofer, and A. Zollinger. An algorithmic approach to geographic routing in ad hoc and sensor networks. IEEE/ACM Trans. Netw., 16(1):51-62, 2008.
21. T. Leighton and A. Moitra. Some results on greedy embeddings in metric spaces. Discr. Comp. Geom., 44(3):686-705, 2010.
22. M. Nöllenburg and R. Prutkin. Euclidean greedy drawings of trees. In Bodlaender and Italiano, editors, ESA, volume 8125 of LNCS, pages 767-778, 2013.
23. M. Nöllenburg, R. Prutkin, and I. Rutter. On self-approaching and increasing-chord drawings of 3-connected planar graphs. J. Comp. Geom., 7(1):47-69, 2016.
24. C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric routing. In Nikoletseas and Rolim, editors, ALGOSENSORS, volume 3121 of LNCS, pages 9-17, 2004.
25. C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric routing. Theor. Comput. Sci., 344(1):3-14, 2005.
26. A. Rao, C. H. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing without location information. In Johnson, Joseph, and Vaidya, editors, MOBICOM, pages 96-108, 2003.
27. C. Siva Ram Murthy and B. S. Manoj. Ad Hoc Wireless Networks: Architectures and Protocols. Prentice Hall, 2004.
28. C. K. Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice Hall, 2002.