The packing lemma of Haussler states that given a set system (X,R) with bounded VC dimension, if every pair of sets in R have large symmetric difference, then R cannot contain too many sets. Recently it was generalized to the shallow packing lemma, applying to set systems as a function of their shallow-cell complexity. In this paper we present several new results and applications related to packings: * an optimal lower bound for shallow packings, * improved bounds on Mnets, providing a combinatorial analogue to Macbeath regions in convex geometry, * we observe that Mnets provide a general, more powerful framework from which the state-of-the-art unweighted epsilon-net results follow immediately, and * simplifying and generalizing one of the main technical tools in [Fox et al. , J. of the EMS, to appear].
@InProceedings{dutta_et_al:LIPIcs.SoCG.2017.38, author = {Dutta, Kunal and Ghosh, Arijit and Jartoux, Bruno and Mustafa, Nabil H.}, title = {{Shallow Packings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial Partitioning}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {38:1--38:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.38}, URN = {urn:nbn:de:0030-drops-71991}, doi = {10.4230/LIPIcs.SoCG.2017.38}, annote = {Keywords: Epsilon-nets, Haussler's packing lemma, Mnets, shallow-cell complexity, shallow packing lemma} }
Feedback for Dagstuhl Publishing