Document

# Quickest Visibility Queries in Polygonal Domains

## File

LIPIcs.SoCG.2017.61.pdf
• Filesize: 0.56 MB
• 16 pages

## Cite As

Haitao Wang. Quickest Visibility Queries in Polygonal Domains. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 61:1-61:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.SoCG.2017.61

## Abstract

Let s be a point in a polygonal domain P of h-1 holes and n vertices. We consider the following quickest visibility query problem. Given a query point q in P, the goal is to find a shortest path in P to move from s to see q as quickly as possible. Previously, Arkin et al. (SoCG 2015) built a data structure of size O(n^2 2^alpha(n) log n) that can answer each query in O(K log^2 n) time, where alpha(n) is the inverse Ackermann function and K is the size of the visibility polygon of q in P (and K can be Theta(n) in the worst case). In this paper, we present a new data structure of size O(n log h + h^2) that can answer each query in O(h log h log n) time. Our result improves the previous work when h is relatively small. In particular, if h is a constant, then our result even matches the best result for the simple polygon case (i.e., h = 1), which is optimal. As a by-product, we also have a new algorithm for the following shortest-path-to-segment query problem. Given a query line segment tau in P, the query seeks a shortest path from s to all points of tau. Previously, Arkin et al. gave a data structure of size O(n^2 2^alpha(n) log n) that can answer each query in O(log^2 n) time, and another data structure of size O(n^3 log n) with O(log n) query time. We present a data structure of size O(n) with query time O(h log n/h), which favors small values of h and is optimal when h = O(1).
##### Keywords
• shortest paths
• visibility
• quickest visibility queries
• shortest path to segments
• polygons with holes

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. E. M. Arkin, A. Efrat, C. Knauer, J. S. B. Mitchell, V. Polishchuk, G. Rote, L. Schlipf, and T. Talvitie. Shortest path to a segment and quickest visibility queries. Journal of Computational Geometry, 7:77-100, 2016.
2. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12(1):54-68, 1994.
3. D. Z. Chen and H. Wang. L₁ shortest path queries among polygonal obstacles in the plane. In Proc. of 30th Symposium on Theoretical Aspects of Computer Science, pages 293-304, 2013.
4. D. Z. Chen and H. Wang. Visibility and ray shooting queries in polygonal domains. Computational Geometry: Theory and Applications, 48:31-41, 2015.
5. D. Z. Chen and H. Wang. Computing the visibility polygon of an island in a polygonal domain. Algorithmica, 77:40-64, 2017.
6. Y. K. Cheung and O. Daescu. Approximate point-to-face shortest paths in ℛ³. arXiv:1004.1588, 2010.
7. Y.-J. Chiang and R. Tamassia. Optimal shortest path and minimum-link path queries between two convex polygons in the presence of obstacles. International Journal of Computational Geometry and Applications, 7:85-121, 1997.
8. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2(1-4):209-233, 1987.
9. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk. Journal of Algorithms, 18(3):403-431, 1995.
10. J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal on Computing, 28(6):2215-2256, 1999.
11. R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple polygons. In Proc. of the 24th European Workshop on Computational Geometry, pages 187-190, 2005.
12. E. Melissaratos and D. Souvaine. Shortest paths help solve geometric optimization problems in planar regions. SIAM Journal on Computing, 21(4):601-638, 1992.
13. J. S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane. Annals of Mathematics and Artificial Intelligence, 3(1):83-105, 1991.
14. J. S. B. Mitchell. Shortest paths among obstacles in the plane. International Journal of Computational Geometry and Applications, 6(3):309-332, 1996.
15. H. Wang. Quickest visibility queries in polygonal domains. arXiv:1703.03048, 2017.
X

Feedback for Dagstuhl Publishing