Document

# A Superlinear Lower Bound on the Number of 5-Holes

## File

LIPIcs.SoCG.2017.8.pdf
• Filesize: 0.57 MB
• 16 pages

## Cite As

Oswin Aichholzer, Martin Balko, Thomas Hackl, Jan Kyncl, Irene Parada, Manfred Scheucher, Pavel Valtr, and Birgit Vogtenhuber. A Superlinear Lower Bound on the Number of 5-Holes. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.SoCG.2017.8

## Abstract

Let P be a finite set of points in the plane in general position, that is, no three points of P are on a common line. We say that a set H of five points from P is a 5-hole in P if H is the vertex set of a convex 5-gon containing no other points of P. For a positive integer n, let h_5(n) be the minimum number of 5-holes among all sets of n points in the plane in general position. Despite many efforts in the last 30 years, the best known asymptotic lower and upper bounds for h_5(n) have been of order Omega(n) and O(n^2), respectively. We show that h_5(n) = Omega(n(log n)^(4/5)), obtaining the first superlinear lower bound on h_5(n). The following structural result, which might be of independent interest, is a crucial step in the proof of this lower bound. If a finite set P of points in the plane in general position is partitioned by a line l into two subsets, each of size at least 5 and not in convex position, then l intersects the convex hull of some 5-hole in P. The proof of this result is computer-assisted.
##### Keywords
• Erdös-Szekeres type problem
• k-hole
• empty k-gon
• empty pentagon
• planar point set

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. O. Aichholzer. Enumerating order types for small point sets with applications. URL: http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/.
2. O. Aichholzer. [Empty] [colored] k-gons. Recent results on some Erdős-Szekeres type problems. In Proceedings of XIII Encuentros de Geometría Computacional, pages 43-52, Zaragoza, Spain, 2009.
3. O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for small point sets with applications. Order, 19(3):265-281, 2002.
4. O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, and B. Vogtenhuber. A superlinear lower bound on the number of 5-holes. http://arXiv.org/abs/1703.05253, 2017.
5. O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber. Lower bounds for the number of small convex k-holes. Computational Geometry: Theory and Applications, 47(5):605-613, 2014.
6. O. Aichholzer, T. Hackl, and B. Vogtenhuber. On 5-gons and 5-holes. Lecture Notes in Computer Science, 7579:1-13, 2012.
7. O. Aichholzer and H. Krasser. Abstract order type extension and new results on the rectilinear crossing number. Computational Geometry: Theory and Applications, 36(1):2-15, 2007.
8. M. Balko. URL: http://kam.mff.cuni.cz/~balko/superlinear5Holes.
9. M. Balko, R. Fulek, and J. Kynčl. Crossing numbers and combinatorial characterization of monotone drawings of K_n. Discrete &Computational Geometry, 53(1):107-143, 2015.
10. I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical Bulletin, 30(4):436-445, 1987.
11. I. Bárány and Gy. Károlyi. Problems and results around the Erdős-Szekeres convex polygon theorem. In Akiyama, Kano, and Urabe, editors, Discrete and Computational Geometry, volume 2098 of Lecture Notes in Computer Science, pages 91-105. Springer, 2001.
12. I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons. Studia Scientiarum Mathematicarum Hungarica, 41(2):243-266, 2004.
13. P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, 2005.
14. K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. PhD thesis, TU Braunschweig, Germany, 1987. In German.
15. P. Erdős. Some more problems on elementary geometry. Australian Mathematical Society Gazette, 5(2):52-54, 1978.
16. P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463-470, 1935.
17. S. Felsner and H. Weil. Sweeps, arrangements and signotopes. Discrete Applied Mathematics, 109(1-2):67-94, 2001.
18. A. García. A note on the number of empty triangles. Lecture Notes in Computer Science, 7579:249-257, 2012.
19. T. Gerken. Empty convex hexagons in planar point sets. Discrete & Computational Geometry, 39(1-3):239-272, 2008.
20. J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM Journal on Computing, 12(3):484-507, 1983.
21. H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik, 33:116-118, 1978. In German.
22. J. D. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26(4):482-484, 1983.
23. C. M. Nicolás. The empty hexagon theorem. Discrete & Computational Geometry, 38(2):389-397, 2007.
24. R. Pinchasi, R. Radoičić, and M. Sharir. On empty convex polygons in a planar point set. Journal of Combinatorial Theory, Series A, 113(3):385-419, 2006.
25. M. Scheucher. URL: http://www.ist.tugraz.at/scheucher/5holes.
26. M. Scheucher. Counting convex 5-holes, Bachelor’s thesis, 2013. In German.
27. M. Scheucher. On order types, projective classes, and realizations, Bachelor’s thesis, 2014.
28. W. Steiger and J. Zhao. Generalized ham-sandwich cuts. Discrete &Computational Geometry, 44(3):535-545, 2010.
29. P. Valtr. Convex independent sets and 7-holes in restricted planar point sets. Discrete & Computational Geometry, 7(2):135-152, 1992.
30. P. Valtr. Sets in ℝ^d with no large empty convex subsets. Discrete Mathematics, 108(1):115-124, 1992.
31. P. Valtr. On empty pentagons and hexagons in planar point sets. In Proceedings of Computing: The Eighteenth Australasian Theory Symposium (CATS 2012), pages 47-48, Melbourne, Australia, 2012.