Document

# Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs

## File

LIPIcs.SoCG.2018.2.pdf
• Filesize: 0.63 MB
• 12 pages

## Cite As

A. Karim Abu-Affash, Paz Carmi, Anil Maheshwari, Pat Morin, Michiel Smid, and Shakhar Smorodinsky. Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.SoCG.2018.2

## Abstract

We consider a well studied generalization of the maximum clique problem which is defined as follows. Given a graph G on n vertices and an integer d >= 1, in the maximum diameter-bounded subgraph problem (MaxDBS for short), the goal is to find a (vertex) maximum subgraph of G of diameter at most d. For d=1, this problem is equivalent to the maximum clique problem and thus it is NP-hard to approximate it within a factor n^{1-epsilon}, for any epsilon > 0. Moreover, it is known that, for any d >= 2, it is NP-hard to approximate MaxDBS within a factor n^{1/2 - epsilon}, for any epsilon > 0. In this paper we focus on MaxDBS for the class of unit disk graphs. We provide a polynomial-time constant-factor approximation algorithm for the problem. The approximation ratio of our algorithm does not depend on the diameter d. Even though the algorithm itself is simple, its analysis is rather involved. We combine tools from the theory of hypergraphs with bounded VC-dimension, k-quasi planar graphs, fractional Helly theorems and several geometric properties of unit disk graphs.
##### Keywords
• Approximation algorithms
• maximum diameter-bounded subgraph
• unit disk graphs
• fractional Helly theorem
• VC-dimension

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. E. Ackerman. On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete Comput. Geom., 41:365-375, 2009.
2. P. K. Agarwal, B. Aronov, J. Pach, and M. Sharir. Quasi-planar graphs have linear number of edges. Combinatorica, 17:1-9, 1997.
3. R. D. Alba. A graph-theoretic definition of a sociometric clique. J. Math. Sociol., 3:113-126, 1973.
4. M. T. Almeida and F. D. Carvalho. Integer models and upper bounds for the 3-club problem. Networks, 60:155-166, 2012.
5. Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum diameter-bounded subgraphs. In LATIN, LNCS 6034, pages 615-626, 2010.
6. B. Balasundaram, S. Butenko, and Trukhanov S. Novel approaches for analyzing biological networks. J. Combin. Optim., 10:23-39, 2005.
7. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. Handbook of Combinatorial Optimization, pages 1-74, Kluwer Academic Publishers, 1999.
8. J.-M. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maximum k-club problem in an undirected graph. European J. Oper. Res., 138:21-28, 2002.
9. A. Buchanan and H. Salemi. Parsimonious formulations for low-diameter clusters. http://www.optimization-online.org/DB_HTML 09/6196.html, 2017.
10. F. D. Carvalho and M. T. Almeida. Upper bounds and heuristics for the 2-club problem. European J. Oper. Res., 210:489-494, 2011.
11. M.-S. Chang, L.-J. Hung, C.-R. Lin, and P.-C. Su. Finding large k-clubs in undirected graphs. Computing, 95:739-758, 2013.
12. V. Chepoi, B. Estellon, and Y. Vaxès. Covering planar graphs with a fixed number of balls. Discrete Comput. Geom., 37:237-244, 2007.
13. B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math., 86:165-177, 1990.
14. A. Gräf, M. Stumpf, and G. Weißenfels. On coloring unit disk graphs. Algorithmica, 20(3):277-293, 1998.
15. S. Har-Peled. Geometric Approximation Algorithms. American Mathematical Society, Boston, USA, 2011.
16. J. Håstad. Clique is hard to approximate within n^1-ε. In FOCS, pages 627-636, 1996.
17. J. Matoušek. Lectures on Discrete Geometry. Springer, New York, USA, 2002.
18. J. Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput. Geom., 31:251-255, 2004.
19. J. Pattillo, Y. Wang, and S. Butenko. Approximating 2-cliques in unit disk graphs. Discrete Appl. Math., 166:178-187, 2014.
20. J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in network analysis. European J. Oper. Res., 226:9-18, 2013.
21. A. Veremyev and V. Boginski. Identifying large robust network clusters via new compact formulations of maximum k-club problems. European J. Oper. Res., 218:316-326, 2012.