Document

# Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs

## File

LIPIcs.SoCG.2018.22.pdf
• Filesize: 493 kB
• 15 pages

## Cite As

Jérémie Chalopin, Victor Chepoi, Feodor F. Dragan, Guillaume Ducoffe, Abdulhakeem Mohammed, and Yann Vaxès. Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.SoCG.2018.22

## Abstract

In this paper, we study Gromov hyperbolicity and related parameters, that represent how close (locally) a metric space is to a tree from a metric point of view. The study of Gromov hyperbolicity for geodesic metric spaces can be reduced to the study of graph hyperbolicity. Our main contribution in this note is a new characterization of hyperbolicity for graphs (and for complete geodesic metric spaces). This characterization has algorithmic implications in the field of large-scale network analysis, which was one of our initial motivations. A sharp estimate of graph hyperbolicity is useful, {e.g.}, in embedding an undirected graph into hyperbolic space with minimum distortion [Verbeek and Suri, SoCG'14]. The hyperbolicity of a graph can be computed in polynomial-time, however it is unlikely that it can be done in subcubic time. This makes this parameter difficult to compute or to approximate on large graphs. Using our new characterization of graph hyperbolicity, we provide a simple factor 8 approximation algorithm for computing the hyperbolicity of an n-vertex graph G=(V,E) in optimal time O(n^2) (assuming that the input is the distance matrix of the graph). This algorithm leads to constant factor approximations of other graph-parameters related to hyperbolicity (thinness, slimness, and insize). We also present the first efficient algorithms for exact computation of these parameters. All of our algorithms can be used to approximate the hyperbolicity of a geodesic metric space.
##### Keywords
• Gromov hyperbolicity
• Graphs
• Geodesic metric spaces
• Approximation algorithms

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. M. Abu-Ata and F.F. Dragan. Metric tree-like structures in real-world networks: an empirical study. Networks, 67(1):49-68, 2016.
2. A.B. Adcock, B.D. Sullivan, and M.W. Mahoney. Tree-like structure in large social and information networks. In ICDM, pages 1-10. IEEE Computer Society, 2013.
3. J.M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short. Notes on word hyperbolic groups. In E. Ghys, A. Haefliger, and A. Verjovsky, editors, Group Theory from a Geometrical Viewpoint, ICTP Trieste 1990, pages 3-63. World Scientific, 1991.
4. A.M. Ben-Amram. The Euler path to static level-ancestors. CoRR, abs/0909.1030, 2009.
5. M.A. Bender and M Farach-Colton. The level ancestor problem simplified. Theor. Comput. Sci., 321(1):5-12, 2004.
6. M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing the hyperbolicity of real-world graphs. In ESA, volume 9294 of Lecture Notes in Computer Science, pages 215-226. Springer, 2015.
7. M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity of some quadratic-time solvable problems. Electr. Notes Theor. Comput. Sci., 322:51-67, 2016.
8. B.H. Bowditch. Notes on Gromov’s hyperbolicity criterion for path-metric spaces. In E. Ghys, A. Haefliger, and A. Verjovsky, editors, Group Theory from a Geometrical Viewpoint, ICTP Trieste 1990, pages 64-167. World Scientific, 1991.
9. M.R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature, volume 319 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999.
10. J. Chalopin, V. Chepoi, F.F. Dragan, G. Ducoffe, A. Mohammed, and Y. Vaxès. Fast approximation and exact computation of negative curvature parameters of graphs. CoRR, abs/1803.06324, 2018.
11. J. Chalopin, V. Chepoi, P. Papasoglu, and T. Pecatte. Cop and robber game and hyperbolicity. SIAM J. Discrete Math., 28(4):1987-2007, 2014.
12. V. Chepoi, F.F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs. In Symposium on Computational Geometry, pages 59-68. ACM, 2008.
13. V. Chepoi, F.F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Yang Xiang. Additive spanners and distance and routing labeling schemes for hyperbolic graphs. Algorithmica, 62(3-4):713-732, 2012.
14. V. Chepoi, F.F. Dragan, and Y. Vaxès. Core congestion is inherent in hyperbolic networks. In SODA, pages 2264-2279. SIAM, 2017.
15. V. Chepoi and B. Estellon. Packing and covering δ-hyperbolic spaces by balls. In APPROX-RANDOM, volume 4627 of Lecture Notes in Computer Science, pages 59-73. Springer, 2007.
16. N. Cohen, D. Coudert, and A. Lancin. On computing the Gromov hyperbolicity. ACM Journal of Experimental Algorithmics, 20:1.6:1-1.6:18, 2015.
17. D. Coudert and G. Ducoffe. Recognition of C₄-free and 1/2-hyperbolic graphs. SIAM J. Discrete Math., 28(3):1601-1617, 2014.
18. D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In SODA, pages 2765-2784. SIAM, 2018.
19. B. DasGupta, M. Karpinski, N. Mobasheri, and F. Yahyanejad. Effect of Gromov-hyperbolicity parameter on cuts and expansions in graphs and some algorithmic implications. Algorithmica, 80(2):772-800, 2018.
20. T. Delzant and M. Gromov. Courbure mésoscopique et théorie de la toute petite simplification. J. Topol., 1:804-836, 2008.
21. R. Duan. Approximation algorithms for the Gromov hyperbolicity of discrete metric spaces. In LATIN, volume 8392 of Lecture Notes in Computer Science, pages 285-293. Springer, 2014.
22. K. Edwards, W.S. Kennedy, and I. Saniee. Fast approximation algorithms for p-centers in large δ-hyperbolic graphs. In WAW, volume 10088 of Lecture Notes in Computer Science, pages 60-73, 2016.
23. T. Fluschnik, C. Komusiewicz, G.B. Mertzios, A. Nichterlein, R. Niedermeier, and N. Talmon. When can graph hyperbolicity be computed in linear time? In WADS, volume 10389 of Lecture Notes in Computer Science, pages 397-408. Springer, 2017.
24. H. Fournier, A. Ismail, and A. Vigneron. Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett., 115(6-8):576-579, 2015.
25. E. Ghys and P. de la Harpe (eds). Les groupes hyperboliques d'après M. Gromov, volume 83 of Progress in Mathematics. Birkhäuser, 1990.
26. M. Gromov. Hyperbolic groups. In S. Gersten, editor, Essays in Group Theory, volume 8 of Math. Sci. Res. Inst. Publ., pages 75-263. Springer, New York, 1987.
27. M.F. Hagen. Weak hyperbolicity of cube complexes and quasi-arboreal groups. J. Topology, 7(2):385-418, 2014.
28. W.S. Kennedy, I. Saniee, and O. Narayan. On the hyperbolicity of large-scale networks and its estimation. In BigData, pages 3344-3351. IEEE, 2016.
29. O. Narayan and I. Saniee. Large-scale curvature of networks. Phys. Rev. E, 84:066108, 2011.
30. P. Papasoglu. An algorithm detecting hyperbolicity. In Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994), volume 25 of DIMACS - Series in Discrete Mathematics and Theoretical Computer Science, pages 193-200. 1996.
31. N. Polat. On infinite bridged graphs and strongly dismantlable graphs. Discrete Mathematics, 211:153-166, 2000.
32. Y. Shavitt and T. Tankel. Hyperbolic embedding of internet graph for distance estimation and overlay construction. IEEE/ACM Trans. Netw., 16(1):25-36, 2008.
33. M. Soto. Quelques propriétés topologiques des graphes et applications à Internet et aux réseaux. PhD thesis, Université Paris Diderot, 2011.
34. K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and social networks. In Symposium on Computational Geometry, pages 501-510. ACM, 2014.
35. H. Yu. An improved combinatorial algorithm for boolean matrix multiplication. In ICALP(1), volume 9134 of Lecture Notes in Computer Science, pages 1094-1105. Springer, 2015.