We study Vietoris-Rips and Cech complexes of metric wedge sums and metric gluings. We show that the Vietoris-Rips (resp. Cech) complex of a wedge sum, equipped with a natural metric, is homotopy equivalent to the wedge sum of the Vietoris-Rips (resp. Cech) complexes. We also provide generalizations for certain metric gluings, i.e. when two metric spaces are glued together along a common isometric subset. As our main example, we deduce the homotopy type of the Vietoris-Rips complex of two metric graphs glued together along a sufficiently short path. As a result, we can describe the persistent homology, in all homological dimensions, of the Vietoris-Rips complexes of a wide class of metric graphs.
@InProceedings{adamaszek_et_al:LIPIcs.SoCG.2018.3, author = {Adamaszek, Michal and Adams, Henry and Gasparovic, Ellen and Gommel, Maria and Purvine, Emilie and Sazdanovic, Radmila and Wang, Bei and Wang, Yusu and Ziegelmeier, Lori}, title = {{Vietoris-Rips and Cech Complexes of Metric Gluings}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {3:1--3:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.3}, URN = {urn:nbn:de:0030-drops-87162}, doi = {10.4230/LIPIcs.SoCG.2018.3}, annote = {Keywords: Vietoris-Rips and Cech complexes, metric space gluings and wedge sums, metric graphs, persistent homology} }
Feedback for Dagstuhl Publishing