In the online metric bipartite matching problem, we are given a set S of server locations in a metric space. Requests arrive one at a time, and on its arrival, we need to immediately and irrevocably match it to a server at a cost which is equal to the distance between these locations. A alpha-competitive algorithm will assign requests to servers so that the total cost is at most alpha times the cost of M_{Opt} where M_{Opt} is the minimum cost matching between S and R. We consider this problem in the adversarial model for the case where S and R are points on a line and |S|=|R|=n. We improve the analysis of the deterministic Robust Matching Algorithm (RM-Algorithm, Nayyar and Raghvendra FOCS'17) from O(log^2 n) to an optimal Theta(log n). Previously, only a randomized algorithm under a weaker oblivious adversary achieved a competitive ratio of O(log n) (Gupta and Lewi, ICALP'12). The well-known Work Function Algorithm (WFA) has a competitive ratio of O(n) and Omega(log n) for this problem. Therefore, WFA cannot achieve an asymptotically better competitive ratio than the RM-Algorithm.
@InProceedings{raghvendra:LIPIcs.SoCG.2018.67, author = {Raghvendra, Sharath}, title = {{Optimal Analysis of an Online Algorithm for the Bipartite Matching Problem on a Line}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {67:1--67:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.67}, URN = {urn:nbn:de:0030-drops-87803}, doi = {10.4230/LIPIcs.SoCG.2018.67}, annote = {Keywords: Bipartite Matching, Online Algorithms, Adversarial Model, Line Metric} }
Feedback for Dagstuhl Publishing