For d ∈ ℕ, let S be a finite set of points in ℝ^d in general position. A set H of k points from S is a k-hole in S if all points from H lie on the boundary of the convex hull conv(H) of H and the interior of conv(H) does not contain any point from S. A set I of k points from S is a k-island in S if conv(I) ∩ S = I. Note that each k-hole in S is a k-island in S. For fixed positive integers d, k and a convex body K in ℝ^d with d-dimensional Lebesgue measure 1, let S be a set of n points chosen uniformly and independently at random from K. We show that the expected number of k-islands in S is in O(n^d). In the case k=d+1, we prove that the expected number of empty simplices (that is, (d+1)-holes) in S is at most 2^(d-1) ⋅ d! ⋅ binom(n,d). Our results improve and generalize previous bounds by Bárány and Füredi [I. Bárány and Z. Füredi, 1987], Valtr [P. Valtr, 1995], Fabila-Monroy and Huemer [Fabila-Monroy and Huemer, 2012], and Fabila-Monroy, Huemer, and Mitsche [Fabila-Monroy et al., 2015].
@InProceedings{balko_et_al:LIPIcs.SoCG.2020.14, author = {Balko, Martin and Scheucher, Manfred and Valtr, Pavel}, title = {{Holes and Islands in Random Point Sets}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {14:1--14:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.14}, URN = {urn:nbn:de:0030-drops-121722}, doi = {10.4230/LIPIcs.SoCG.2020.14}, annote = {Keywords: stochastic geometry, random point set, Erd\H{o}s-Szekeres type problem, k-hole, k-island, empty polytope, convex position, Horton set} }
Feedback for Dagstuhl Publishing