Document Open Access Logo

The Next 350 Million Knots

Author Benjamin A. Burton



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2020.25.pdf
  • Filesize: 1.85 MB
  • 17 pages

Document Identifiers

Author Details

Benjamin A. Burton
  • The University of Queensland, Brisbane, Australia

Cite AsGet BibTex

Benjamin A. Burton. The Next 350 Million Knots. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 25:1-25:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.SoCG.2020.25

Abstract

The tabulation of all prime knots up to a given number of crossings was one of the founding problems of knot theory in the 1800s, and continues to be of interest today. Here we extend the tables from 16 to 19 crossings, with a total of 352 152 252 distinct non-trivial prime knots. The tabulation has two major stages: (1) a combinatorial enumeration stage, which involves generating a provably sufficient set of candidate knot diagrams; and (2) a computational topology stage, which involves identifying and removing duplicate knots, and certifying that all knots that remain are topologically distinct. In this paper we describe the many different algorithmic components in this process, which draw on graph theory, hyperbolic geometry, knot polynomials, normal surface theory, and computational algebra. We also discuss the algorithm engineering challenges in solving difficult topological problems systematically and reliably on hundreds of millions of inputs, despite the fact that no reliably fast algorithms for these problems are known.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Topology
Keywords
  • Computational topology
  • knots
  • 3-manifolds
  • implementation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Colin C. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W. H. Freeman & Co., New York, 1994. Google Scholar
  2. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993). URL: https://doi.org/10.1006/jsco.1996.0125.
  3. Gunnar Brinkmann and Brendan McKay. plantri, 2018. URL: http://users.cecs.anu.edu.au/~bdm/plantri/.
  4. Benjamin A. Burton. Introducing Regina, the 3-manifold topology software. Experiment. Math., 13(3):267-272, 2004. Google Scholar
  5. Benjamin A. Burton. Simplification paths in the Pachner graphs of closed orientable 3-manifold triangulations. Preprint, https://arxiv.org/abs/1110.6080, October 2011. URL: https://arxiv.org/abs/1110.6080.
  6. Benjamin A. Burton. The HOMFLY-PT polynomial is fixed-parameter tractable. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International Symposium on Computational Geometry, volume 99 of LIPIcs. Leibniz Int. Proc. Inform., pages 18:1-18:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.18.
  7. Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-dimensional topology, 1999-2019. URL: http://regina-normal.github.io/.
  8. Benjamin A. Burton and Melih Ozlen. A fast branching algorithm for unknot recognition with experimental polynomial-time behaviour. To appear in Math. Program., https://arxiv.org/abs/1211.1079, November 2012. URL: https://arxiv.org/abs/1211.1079.
  9. Benjamin A. Burton and Stephan Tillmann. Computing closed essential surfaces in 3-manifolds. Preprint, https://arxiv.org/abs/1812.11686, December 2018. URL: https://arxiv.org/abs/1812.11686.
  10. J. H. Conway. An enumeration of knots and links, and some of their algebraic properties. In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 329-358. Pergamon, Oxford, 1970. Google Scholar
  11. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009. Google Scholar
  12. Peter R. Cromwell. Knots and links. Cambridge University Press, Cambridge, 2004. URL: https://doi.org/10.1017/CBO9780511809767.
  13. Marc Culler, Nathan M. Dunfield, and Jeffrey R. Weeks. SnapPy, a computer program for studying the geometry and topology of 3-manifolds, 1991-2013. URL: http://snappy.computop.org/.
  14. C. H. Dowker and Morwen B. Thistlethwaite. Classification of knot projections. Topology Appl., 16(1):19-31, 1983. URL: https://doi.org/10.1016/0166-8641(83)90004-4.
  15. D. B. A. Epstein and R. C. Penner. Euclidean decompositions of noncompact hyperbolic manifolds. J. Differential Geom., 27(1):67-80, 1988. Google Scholar
  16. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.), 12(2):239-246, 1985. URL: https://doi.org/10.1090/S0273-0979-1985-15361-3.
  17. David Futer and François Guéritaud. From angled triangulations to hyperbolic structures. In Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory, volume 541 of Contemp. Math., pages 159-182. Amer. Math. Soc., Providence, RI, 2011. Google Scholar
  18. The GAP Group. GAP - Groups, Algorithms, and Programming, 2019. URL: https://www.gap-system.org.
  19. C. McA. Gordon and J. Luecke. Knots are determined by their complements. J. Amer. Math. Soc., 2(2):371-415, 1989. Google Scholar
  20. Robert C. Haraway, III. Determining hyperbolicity of compact orientable 3-manifolds. Preprint, https://arxiv.org/abs/1410.7115, October 2014. URL: https://arxiv.org/abs/1410.7115.
  21. Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of knot and link problems. J. Assoc. Comput. Mach., 46(2):185-211, 1999. Google Scholar
  22. Neil Hoffman, Kazuhiro Ichihara, Masahide Kashiwagi, Hidetoshi Masai, Shin'ichi Oishi, and Akitoshi Takayasu. Verified computations for hyperbolic 3-manifolds. Exp. Math., 25(1):66-78, 2016. URL: https://doi.org/10.1080/10586458.2015.1029599.
  23. Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks. The first 1,701,936 knots. Math. Intelligencer, 20(4):33-48, 1998. Google Scholar
  24. Louis H. Kauffman. State models for link polynomials. Enseign. Math. (2), 36(1-2):1-37, 1990. Google Scholar
  25. C. N. Little. Non-alternate ± knots. Trans. Royal Soc. Edinburgh, 39:771-778, 1900. Google Scholar
  26. A. A. Markov. Insolubility of the problem of homeomorphy. In Proc. Internat. Congress Math. 1958, pages 300-306. Cambridge Univ. Press, New York, 1960. Google Scholar
  27. Józef H. Przytycki and Paweł Traczyk. Invariants of links of Conway type. Kobe J. Math., 4(2):115-139, 1988. Google Scholar
  28. Igor Rivin. Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. of Math. (2), 139(3):553-580, 1994. Google Scholar
  29. The Sage Developers. SageMath, the Sage Mathematics Software System, 2018. URL: https://www.sagemath.org/.
  30. Charles C. Sims. Computation with Finitely Presented Groups, volume 48 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. URL: https://doi.org/10.1017/CBO9780511574702.
  31. William P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.), 6(3):357-381, 1982. Google Scholar
  32. Jeffrey R. Weeks. Convex hulls and isometries of cusped hyperbolic 3-manifolds. Topology Appl., 52(2):127-149, 1993. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail