LIPIcs.SoCG.2020.4.pdf
- Filesize: 0.89 MB
- 16 pages
We investigate how the complexity of {Euclidean TSP} for point sets P inside the strip (-∞,+∞)×[0,δ] depends on the strip width δ. We obtain two main results. - For the case where the points have distinct integer x-coordinates, we prove that a shortest bitonic tour (which can be computed in O(n log²n) time using an existing algorithm) is guaranteed to be a shortest tour overall when δ ⩽ 2√2, a bound which is best possible. - We present an algorithm that is fixed-parameter tractable with respect to δ. More precisely, our algorithm has running time 2^{O(√δ)} n² for sparse point sets, where each 1×δ rectangle inside the strip contains O(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle [0,n]× [0,δ], it has an expected running time of 2^{O(√δ)} n² + O(n³).
Feedback for Dagstuhl Publishing