In a colouring of ℝ^d a pair (S,s₀) with S ⊆ ℝ^d and with s₀ ∈ S is almost-monochromatic if S⧵{s₀} is monochromatic but S is not. We consider questions about finding almost-monochromatic similar copies of pairs (S,s₀) in colourings of ℝ^d, ℤ^d, and of ℚ under some restrictions on the colouring. Among other results, we characterise those (S,s₀) with S ⊆ ℤ for which every finite colouring of ℝ without an infinite monochromatic arithmetic progression contains an almost-monochromatic similar copy of (S,s₀). We also show that if S ⊆ ℤ^d and s₀ is outside of the convex hull of S⧵{s₀}, then every finite colouring of ℝ^d without a monochromatic similar copy of ℤ^d contains an almost-monochromatic similar copy of (S,s₀). Further, we propose an approach based on finding almost-monochromatic sets that might lead to a human-verifiable proof of χ(ℝ²) ≥ 5.
@InProceedings{frankl_et_al:LIPIcs.SoCG.2020.47, author = {Frankl, N\'{o}ra and Hubai, Tam\'{a}s and P\'{a}lv\"{o}lgyi, D\"{o}m\"{o}t\"{o}r}, title = {{Almost-Monochromatic Sets and the Chromatic Number of the Plane}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {47:1--47:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.47}, URN = {urn:nbn:de:0030-drops-122054}, doi = {10.4230/LIPIcs.SoCG.2020.47}, annote = {Keywords: discrete geometry, Hadwiger-Nelson problem, Euclidean Ramsey theory} }
Feedback for Dagstuhl Publishing