While the problem of determining whether an embedding of a graph G in ℝ² is infinitesimally rigid is well understood, specifying whether a given embedding of G is rigid or not is still a hard task that usually requires ad hoc arguments. In this paper, we show that every embedding (not necessarily generic) of a dense enough graph (concretely, a graph with at least C₀n^{3/2}(log n)^β edges, for some absolute constants C₀>0 and β), which satisfies some very mild general position requirements (no three vertices of G are embedded to a common line), must have a subframework of size at least three which is rigid. For the proof we use a connection, established in Raz [Discrete Comput. Geom., 2017], between the notion of graph rigidity and configurations of lines in ℝ³. This connection allows us to use properties of line configurations established in Guth and Katz [Annals Math., 2015]. In fact, our proof requires an extended version of Guth and Katz result; the extension we need is proved by János Kollár in an Appendix to our paper. We do not know whether our assumption on the number of edges being Ω(n^{3/2}log n) is tight, and we provide a construction that shows that requiring Ω(n log n) edges is necessary.
@InProceedings{raz_et_al:LIPIcs.SoCG.2020.65, author = {Raz, Orit E. and Solymosi, J\'{o}zsef}, title = {{Dense Graphs Have Rigid Parts}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {65:1--65:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.65}, URN = {urn:nbn:de:0030-drops-122236}, doi = {10.4230/LIPIcs.SoCG.2020.65}, annote = {Keywords: Graph rigidity, line configurations in 3D} }
Feedback for Dagstuhl Publishing