Plane-Filling Trails (Media Exposition)

Author Herman Haverkort

Thumbnail PDF


  • Filesize: 4.56 MB
  • 5 pages

Document Identifiers

Author Details

Herman Haverkort
  • Universität Bonn, Germany

Cite AsGet BibTex

Herman Haverkort. Plane-Filling Trails (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 81:1-81:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


The order in which plane-filling curves visit points in the plane can be exploited to design efficient algorithms. Typically, the curves are useful because they preserve locality: points that are close to each other along the curve tend to be close to each other in the plane, and vice versa. However, sketches of plane-filling curves do not show this well: they are hard to read on different levels of detail and it is hard to see how far apart points are along the curve. This paper presents a software tool to produce compelling visualisations that may give more insight in the structure of the curves.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • space-filling curve
  • plane-filling curve
  • spatial indexing


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. M. Bader. Space-filling curves: an introduction with applications in scientific computing. Springer, 2013. Google Scholar
  2. C. Bandt, D. Mekhontsev, and A. Tetenov. A single fractal pinwheel tile. Proc. Amer. Math,. Soc., 146:1271-1285, 2018. Google Scholar
  3. C. Burstedde and J. Holke. A tetrahedral space-filling curve for nonconforming adaptive meshes. SIAM J. Scientific Computing, 38(5), 2016. Google Scholar
  4. C. Faloutsos. Multiattribute hashing using Gray codes. In Proc. 1986 Conf. ACM SIG Management of Data (SIGMOD 1986), pages 227-238, 1986. Google Scholar
  5. M. Gardner. Mathematical games: in which "monster" curves force redefinition of the word "curve". Scientific American, 235:124-133, 1976. Google Scholar
  6. H. Haverkort. Sixteen space-filling curves and traversals for d-dimensional cubes and simplices. CoRR, abs/1711.04473, 2017. URL:
  7. D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann., 38(3):459-460, 1891. Google Scholar
  8. G. Irving and H. Segerman. Developing fractal curves. J. of Mathematics and the Arts, 7(3-4):103-121, 2013. Google Scholar
  9. G. Morton. A computer oriented geodetic data base, and a new technique in file sequencing. Technical report, International Business Machines Co., Ottawa, Canada, 1966. Google Scholar
  10. S. Ortiz. Hilbert curve marble run, 2018. Accessed 26 March 2020. URL:
  11. G. Peano. Sur une courbe, qui remplit toute une aire plane. Math. Ann., 36(1):157-160, 1890. Google Scholar
  12. G. Pólya. Über eine Peanosche Kurve. Bull. Int. Acad. Sci. Cracovie, Ser. A, pages 305-313, 1913. Google Scholar
  13. G. Rauzy. Nombres algébriques et substitutions. Bulletin Soc. Math. Fr., 110:147-178, 1982. Google Scholar
  14. H. Samet. Foundations of multidimensional and metric data structures, page 199. Morgan Kaufmann, 2006. Google Scholar
  15. J. Ventrella. Brainfilling curves: a fractal bestiary. Eyebrain books, 2012. Google Scholar
  16. J.-M. Wierum. Definition of a new circular space-filling curve: βΩ-indexing. Technical Report TR-001-02, Paderborn Center for Parallel Computing (PC²), 2002. Google Scholar
  17. S.-E. Yoon and P. Lindstrom. Mesh layouts for block-based caches. IEEE Trans. on Visualization and Computer Graphics, 12(5), 2006. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail