In this work we extend the robust version of the Sylvester-Gallai theorem, obtained by Barak, Dvir, Wigderson and Yehudayoff, and by Dvir, Saraf and Wigderson, to the case of quadratic polynomials. Specifically, we prove that if {𝒬} ⊂ ℂ[x₁.…,x_n] is a finite set, |{𝒬}| = m, of irreducible quadratic polynomials that satisfy the following condition There is δ > 0 such that for every Q ∈ {𝒬} there are at least δ m polynomials P ∈ {𝒬} such that whenever Q and P vanish then so does a third polynomial in {𝒬}⧵{Q,P}. then dim(span) = Poly(1/δ). The work of Barak et al. and Dvir et al. studied the case of linear polynomials and proved an upper bound of O(1/δ) on the dimension (in the first work an upper bound of O(1/δ²) was given, which was improved to O(1/δ) in the second work).
@InProceedings{peleg_et_al:LIPIcs.SoCG.2022.43, author = {Peleg, Shir and Shpilka, Amir}, title = {{Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {43:1--43:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.43}, URN = {urn:nbn:de:0030-drops-160515}, doi = {10.4230/LIPIcs.SoCG.2022.43}, annote = {Keywords: Sylvester-Gallai theorem, quadratic polynomials, Algebraic computation} }
Feedback for Dagstuhl Publishing