In STOC'95 [ADMSS95] Arya et al. showed that any set of n points in R^d admits a (1+ε)-spanner with hop-diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges). They also gave a general upper bound tradeoff of hop-diameter at most k and O(n α_k(n)) edges, for any k≥2. The function α_k is the inverse of a certain Ackermann-style function at the ⌊k/2⌋th level of the primitive recursive hierarchy, where α₀(n)=⌈n/2⌉, α₁(n)=⌈√n⌉, α₂(n)=⌈log n⌉, α₃(n)=⌈log log n⌉, α₄(n)=log^* n, α₅(n)=⌊1/2 log^*n⌋, .... Roughly speaking, for k≥2 the function α_{k} is close to ⌊(k-2)/2⌋-iterated log-star function, i.e., log with ⌊(k-2)/2⌋ stars. Also, α_{2α(n)+4}(n)≤4, where α(n) is the one-parameter inverse Ackermann function, which is an extremely slowly growing function. Whether or not this tradeoff is tight has remained open, even for the cases k=2 and k=3. Two lower bounds are known: The first applies only to spanners with stretch 1 and the second is sub-optimal and applies only to sufficiently large (constant) values of k. In this paper we prove a tight lower bound for any constant k: For any fixed ε>0, any (1+ε)-spanner for the uniform line metric with hop-diameter at most k must have at least Ω(n α_k(n)) edges.
@InProceedings{le_et_al:LIPIcs.SoCG.2022.54, author = {Le, Hung and Milenkovi\'{c}, Lazar and Solomon, Shay}, title = {{Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {54:1--54:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.54}, URN = {urn:nbn:de:0030-drops-160629}, doi = {10.4230/LIPIcs.SoCG.2022.54}, annote = {Keywords: Euclidean spanners, hop-diameter, inverse-Ackermann, lower bounds, sparse spanners} }
Feedback for Dagstuhl Publishing