Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable

Authors Sujoy Bhore , Robert Ganian , Liana Khazaliya , Fabrizio Montecchiani , Martin Nöllenburg

Thumbnail PDF


  • Filesize: 0.96 MB
  • 16 pages

Document Identifiers

Author Details

Sujoy Bhore
  • Indian Institute of Technology Bombay, India
Robert Ganian
  • Technische Universität Wien, Austria
Liana Khazaliya
  • Technische Universität Wien, Austria
Fabrizio Montecchiani
  • University of Perugia, Italy
Martin Nöllenburg
  • Technische Universität Wien, Austria

Cite AsGet BibTex

Sujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, and Martin Nöllenburg. Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


The task of finding an extension to a given partial drawing of a graph while adhering to constraints on the representation has been extensively studied in the literature, with well-known results providing efficient algorithms for fundamental representations such as planar and beyond-planar topological drawings. In this paper, we consider the extension problem for bend-minimal orthogonal drawings of planar graphs, which is among the most fundamental geometric graph drawing representations. While the problem was known to be NP-hard, it is natural to consider the case where only a small part of the graph is still to be drawn. Here, we establish the fixed-parameter tractability of the problem when parameterized by the size of the missing subgraph. Our algorithm is based on multiple novel ingredients which intertwine geometric and combinatorial arguments. These include the identification of a new graph representation of bend-equivalent regions for vertex placement in the plane, establishing a bound on the treewidth of this auxiliary graph, and a global point-grid that allows us to discretize the possible placement of bends and vertices into locally bounded subgrids for each of the above regions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Mathematics of computing → Graph algorithms
  • orthogonal drawings
  • bend minimization
  • extension problems
  • parameterized complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM Trans. Algorithms, 11(4):32:1-32:42, 2015. URL: https://doi.org/10.1145/2629341.
  2. Patrizio Angelini, Ignaz Rutter, and T. P. Sandhya. Extending partial orthogonal drawings. J. Graph Algorithms Appl., 25(1):581-602, 2021. URL: https://doi.org/10.7155/jgaa.00573.
  3. Alan Arroyo, Fabian Klute, Irene Parada, Birgit Vogtenhuber, Raimund Seidel, and Tilo Wiedera. Inserting one edge into a simple drawing is hard. Discrete & Computational Geometry, pages 1-26, 2022. URL: https://doi.org/10.1007/978-3-030-60440-0_26.
  4. Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal drawings. SIAM J. Comput., 27(6):1764-1811, 1998. URL: https://doi.org/10.1137/S0097539794262847.
  5. Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Comput. Geom. Theory Appl., 9(3):159-180, 1998. URL: https://doi.org/10.1016/S0925-7721(97)00026-6.
  6. Therese Biedl, Anna Lubiw, Mark Petrick, and Michael J. Spriggs. Morphing orthogonal planar graph drawings. ACM Trans. Algorithms, 9(4):29, 2013. URL: https://doi.org/10.1145/2500118.
  7. Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal orthogonal graph drawing with convex bend costs. ACM Trans. Algorithms, 12(3):33:1-33:32, 2016. URL: https://doi.org/10.1145/2838736.
  8. Guido Brückner, Ignaz Rutter, and Peter Stumpf. Extending partial representations of circle graphs in near-linear time. In 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 25:1-25:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.MFCS.2022.25.
  9. Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Discrete Algorithms (SODA'17), pages 2000-2011. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.130.
  10. Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl., 16(2):243-259, 2012. URL: https://doi.org/10.7155/jgaa.00257.
  11. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  12. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. Google Scholar
  13. Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing of bounded treewidth graphs. J. Comput. Syst. Sci., 125:129-148, 2022. URL: https://doi.org/10.1016/j.jcss.2021.11.004.
  14. Walter Didimo and Giuseppe Liotta. Computing orthogonal drawings in a variable embedding setting. In Kyung-Yong Chwa and Oscar H. Ibarra, editors, Algorithms and Computation (ISAAC'98), volume 1533 of LNCS, pages 79-88. Springer, 1998. URL: https://doi.org/10.1007/3-540-49381-6_10.
  15. Walter Didimo, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani. Optimal orthogonal drawings of planar 3-graphs in linear time. In Discrete Algorithms (SODA'20), pages 806-825. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.49.
  16. Christian A. Duncan and Michael T. Goodrich. Planar orthogonal and polyline drawing algorithms. In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization, chapter 7, pages 223-246. CRC Press, 2013. Google Scholar
  17. Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending nearly complete 1-planar drawings in polynomial time. In Javier Esparza and Daniel Král', editors, Mathematical Foundations of Computer Science (MFCS'20), volume 170 of LIPIcs, pages 31:1-31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.31.
  18. Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending partial 1-planar drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, Automata, Languages, and Programming (ICALP'20), volume 168 of LIPIcs, pages 43:1-43:19. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.43.
  19. Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau. Orthogonal graph drawing. In Michael Kaufmann and Dorothea Wagner, editors, Drawing Graphs: Methods and Models, volume 2025 of LNCS, chapter 6, pages 121-171. Springer-Verlag, 2001. URL: https://doi.org/10.1007/3-540-44969-8_6.
  20. Jirí Fiala, Ignaz Rutter, Peter Stumpf, and Peter Zeman. Extending partial representations of circular-arc graphs. In Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture Notes in Computer Science, pages 230-243. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-15914-5_17.
  21. Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-optimal extension of simple drawings. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 72:1-72:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.72.
  22. Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601-625, 2001. URL: https://doi.org/10.1137/S0097539794277123.
  23. Thekla Hamm and Petr Hlinený. Parameterised partially-predrawn crossing number. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022, volume 224 of LIPIcs, pages 46:1-46:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.46.
  24. Udo Hoffmann. On the complexity of the planar slope number problem. J. Graph Algorithms Appl., 21(2):183-193, 2017. URL: https://doi.org/10.7155/jgaa.00411.
  25. Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. Theory Appl., 46(4):466-492, 2013. URL: https://doi.org/10.1016/j.comgeo.2012.07.005.
  26. Balázs Keszegh, János Pach, and Dömötör Pálvölgyi. Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math., 27(2):1171-1183, 2013. URL: https://doi.org/10.1137/100815001.
  27. Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar graph drawings. Comput. Geom. Theory Appl., 91:101668, 2020. URL: https://doi.org/10.1016/j.comgeo.2020.101668.
  28. Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending convex partial drawings of graphs. Algorithmica, 76(1):47-67, 2016. URL: https://doi.org/10.1007/s00453-015-0018-6.
  29. Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture Notes Series on Computing. World Scientific, 2004. URL: https://doi.org/10.1142/5648.
  30. Maurizio Patrignani. On extending a partial straight-line drawing. Int. J. Found. Comput. Sci., 17(5):1061-1070, 2006. URL: https://doi.org/10.1142/S0129054106004261.
  31. Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421-444, 1987. URL: https://doi.org/10.1137/0216030.