Improved Algebraic Degeneracy Testing

Authors Jean Cardinal , Micha Sharir



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2023.22.pdf
  • Filesize: 0.82 MB
  • 16 pages

Document Identifiers

Author Details

Jean Cardinal
  • Université Libre de Bruxelles, Belgium
Micha Sharir
  • School of Computer Science, Tel Aviv University, Israel

Acknowledgements

This work was initiated during a visit of the authors to the group of Pr. Emo Welzl at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland.

Cite AsGet BibTex

Jean Cardinal and Micha Sharir. Improved Algebraic Degeneracy Testing. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SoCG.2023.22

Abstract

In the classical linear degeneracy testing problem, we are given n real numbers and a k-variate linear polynomial F, for some constant k, and have to determine whether there exist k numbers a_1,…,a_k from the set such that F(a_1,…,a_k) = 0. We consider a generalization of this problem in which F is an arbitrary constant-degree polynomial, we are given k sets of n real numbers, and have to determine whether there exists a k-tuple of numbers, one in each set, on which F vanishes. We give the first improvement over the naïve O^*(n^{k-1}) algorithm for this problem (where the O^*(⋅) notation omits subpolynomial factors). We show that the problem can be solved in time O^*(n^{k - 2 + 4/(k+2)}) for even k and in time O^*(n^{k - 2 + (4k-8)/(k²-5)}) for odd k in the real RAM model of computation. We also prove that for k = 4, the problem can be solved in time O^*(n^2.625) in the algebraic decision tree model, and for k = 5 it can be solved in time O^*(n^3.56) in the same model, both improving on the above uniform bounds. All our results rely on an algebraic generalization of the standard meet-in-the-middle algorithm for k-SUM, powered by recent algorithmic advances in the polynomial method for semi-algebraic range searching. In fact, our main technical result is much more broadly applicable, as it provides a general tool for detecting incidences and other interactions between points and algebraic surfaces in any dimension. In particular, it yields an efficient algorithm for a general, algebraic version of Hopcroft’s point-line incidence detection problem in any dimension.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Theory of computation → Computational geometry
Keywords
  • Degeneracy testing
  • k-SUM problem
  • incidence bounds
  • Hocroft’s problem
  • polynomial method
  • algebraic decision trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal. Simplex range searching and its variants: A review. In A Journey through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 1-30. Springer-Verlag, 2017. URL: https://doi.org/10.1007/978-3-319-44479-6_1.
  2. Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir. Intersection queries for flat semi-algebraic objects in three dimensions and related problems. In 38th International Symposium on Computational Geometry, SoCG 2022, pages 4:1-4:14, 2022. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.4.
  3. Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. Efficient algorithm for generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760-787, 2021. Also in Proceedings of SoCG'20. URL: https://doi.org/10.1137/19M1268550.
  4. Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM, 52(2):157-171, 2005. URL: https://doi.org/10.1145/1059513.1059515.
  5. Boris Aronov and Jean Cardinal. Geometric pattern matching reduces to k-SUM. Discrete Comput. Geom., 68(3):850-859, 2022. Also in Proceedings of ISAAC'20. URL: https://doi.org/10.1007/s00454-021-00324-1.
  6. Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir. Subquadratic algorithms for some 3SUM-hard geometric problems in the algebraic decision-tree model. Comput. Geom., 109:101945, 2023. Also in Proceedings of ISAAC'21. URL: https://doi.org/10.1016/j.comgeo.2022.101945.
  7. Boris Aronov, Esther Ezra, and Micha Sharir. Testing polynomials for vanishing on cartesian products of planar point sets: Collinearity testing and related problems. Discrete Comput. Geom., 68(4):997-1048, 2022. Also in Proceedings of SoCG'20. URL: https://doi.org/10.1007/s00454-022-00437-1.
  8. Friedhelm Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional knapsack problem. J. ACM, 31(3):668-676, 1984. URL: https://doi.org/10.1145/828.322450.
  9. Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms for 3SUM. Algorithmica, 50(4):584-596, 2008. URL: https://doi.org/10.1007/s00453-007-9036-3.
  10. Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam Solomon. Subquadratic algorithms for algebraic 3SUM. Discrete Comput. Geom., 61(4):698-734, 2019. Also in Proceedings of SoCG'17. URL: https://doi.org/10.1007/s00454-018-0040-y.
  11. Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, Heidelberg, 2006. URL: https://doi.org/10.1007/3-540-33099-2.
  12. Michael Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pages 80-86. ACM, 1983. URL: https://doi.org/10.1145/800061.808735.
  13. Jean Cardinal, John Iacono, and Aurélien Ooms. Solving k-SUM using few linear queries. In 24th Annual European Symposium on Algorithms, ESA 2016, pages 25:1-25:17, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.25.
  14. Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)-convolution, and some geometric 3SUM-hard problems. ACM Trans. Algorithms, 16(1):7:1-7:23, 2020. URL: https://doi.org/10.1145/3363541.
  15. Timothy M. Chan and Qizheng He. Reducing 3SUM to convolution-3SUM. In 3rd Symposium on Simplicity in Algorithms, SOSA 2020, pages 1-7. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611976014.1.
  16. Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 190-210. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.10.
  17. David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer Verlag, Heidelberg, 2007. URL: https://doi.org/10.1007/978-3-319-16721-3.
  18. Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-77974-2.
  19. Bartlomiej Dudek, Pawel Gawrychowski, and Tatiana Starikovskaya. All non-trivial variants of 3-LDT are equivalent. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 974-981. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384275.
  20. Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a monotone subdivision. SIAM J. Comput., 15(2):317-340, 1986. URL: https://doi.org/10.1137/0215023.
  21. Herbert Edelsbrunner, Joseph O'Rourke, and Raimund Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput., 15(2):341-363, 1986. URL: https://doi.org/10.1137/0215024.
  22. Jeff Erickson. Bounds for linear satisfiability problems. Chic. J. Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/8/contents.html.
  23. Jeff Erickson and Raimund Seidel. Better lower bounds on detecting affine and spherical degeneracies. Discrete Comput. Geom., 13:41-57, 1995. URL: https://doi.org/10.1007/BF02574027.
  24. Esther Ezra and Micha Sharir. A nearly quadratic bound for point-location in hyperplane arrangements, in the linear decision tree model. Discrete Comput. Geom., 61(4):735-755, 2019. URL: https://doi.org/10.1007/s00454-018-0043-8.
  25. Esther Ezra and Micha Sharir. Intersection searching amid tetrahedra in 4-space and efficient continuous collision detection. In 30th Annual European Symposium on Algorithms, ESA 2022, pages 51:1-51:17, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.51.
  26. Jacob Fox, János Pach, Adam Sheffer, Andrew Suk, and Joshua Zahl. A semi-algebraic version of Zarankiewicz’s problem. J. Eur. Math. Soc., 19(6):1785-1810, 2017. URL: https://doi.org/10.4171/JEMS/705.
  27. Michael L. Fredman. How good is the information theory bound in sorting? Theor. Comput. Sci., 1(4):355-361, 1976. URL: https://doi.org/10.1016/0304-3975(76)90078-5.
  28. Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J. Comput., 5(1):83-89, 1976. URL: https://doi.org/10.1137/0205006.
  29. Ari Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440-458, 2017. URL: https://doi.org/10.1007/s00453-015-0079-6.
  30. Anka Gajentaan and Mark H. Overmars. On a class of O(n²) problems in computational geometry. Comput. Geom., 5:165-185, 1995. URL: https://doi.org/10.1016/0925-7721(95)00022-2.
  31. Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy. In 25th Annual European Symposium on Algorithms, ESA 2017, pages 42:1-42:13, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.42.
  32. Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM, 65(4):22:1-22:25, 2018. Also in Proceedings of FOCS'14. URL: https://doi.org/10.1145/3185378.
  33. Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for k-SUM and related problems. J. ACM, 66(3):16:1-16:18, 2019. Also in Proceedings of STOC'18. URL: https://doi.org/10.1145/3285953.
  34. D. T. Lee and Franco P. Preparata. Location of a point in a planar subdivision and its applications. SIAM J. Comput., 6(3):594-606, 1977. URL: https://doi.org/10.1137/0206043.
  35. Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. Deterministic time-space trade-offs for k-SUM. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, pages 58:1-58:14, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.58.
  36. Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom., 10:157-182, 1993. URL: https://doi.org/10.1007/BF02573972.
  37. Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom., 54(1):22-41, 2015. URL: https://doi.org/10.1007/s00454-015-9701-2.
  38. Stefan Meiser. Point location in arrangements of hyperplanes. Inf. Comput., 106(2):286-303, 1993. URL: https://doi.org/10.1006/inco.1993.1057.
  39. Mihai Pǎtraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pages 1065-1075. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.86.
  40. Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, 1985. URL: https://doi.org/10.1007/978-1-4612-1098-6.
  41. Edward M. Reingold. On the optimality of some set algorithms. J. ACM, 19(4):649-659, 1972. URL: https://doi.org/10.1145/321724.321730.
  42. Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent search trees. Commun. ACM, 29(7):669-679, 1986. URL: https://doi.org/10.1145/6138.6151.
  43. Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701-717, 1980. URL: https://doi.org/10.1145/322217.322225.
  44. J. Michael Steele and Andrew Chi-Chih Yao. Lower bounds for algebraic decision trees. J. Algorithms, 3(1):1-8, 1982. URL: https://doi.org/10.1016/0196-6774(82)90002-5.
  45. Virginia Vassilevska Williams. On some fine-grained complexity questions in algorithms and complexity. Proceedings of the International Congress of Mathematicians, ICM 2018, pages 3447-3487, 2018. URL: https://doi.org/10.1142/9789813272880_0188.
  46. Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic Computation, EUROSAM '79, volume 72 of Lecture Notes in Computer Science, pages 216-226. Springer, 1979. URL: https://doi.org/10.1007/3-540-09519-5_73.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail