The Christoffel-Darboux Kernel for Topological Data Analysis

Authors Pepijn Roos Hoefgeest, Lucas Slot



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2023.38.pdf
  • Filesize: 2.64 MB
  • 20 pages

Document Identifiers

Author Details

Pepijn Roos Hoefgeest
  • Vrije Universiteit (VU) Amsterdam, The Netherlands
Lucas Slot
  • ETH Zürich, Switzerland

Cite AsGet BibTex

Pepijn Roos Hoefgeest and Lucas Slot. The Christoffel-Darboux Kernel for Topological Data Analysis. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 38:1-38:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SoCG.2023.38

Abstract

Persistent homology has been widely used to study the topology of point clouds in ℝⁿ. Standard approaches are very sensitive to outliers, and their computational complexity depends badly on the number of data points. In this paper we introduce a novel persistence module for a point cloud using the theory of Christoffel-Darboux kernels. This module is robust to (statistical) outliers in the data, and can be computed in time linear in the number of data points. We illustrate the benefits and limitations of our new module with various numerical examples in ℝⁿ, for n = 1, 2, 3. Our work expands upon recent applications of Christoffel-Darboux kernels in the context of statistical data analysis and geometric inference [Lasserre et al., 2022]. There, these kernels are used to construct a polynomial whose level sets capture the geometry of a point cloud in a precise sense. We show that the persistent homology associated to the sublevel set filtration of this polynomial is stable with respect to the Wasserstein distance. Moreover, we show that the persistent homology of this filtration can be computed in singly exponential time in the ambient dimension n, using a recent algorithm of Basu & Karisani [Basu and Karisani, 2022].

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Algebraic topology
Keywords
  • Topological Data Analysis
  • Geometric Inference
  • Christoffel-Darboux Kernels
  • Persistent Homology
  • Wasserstein Distance
  • Semi-Algebraic Sets

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Saugata Basu and Negin Karisani. Persistent homology of semi-algebraic sets, 2022. URL: https://arxiv.org/abs/2202.09591.
  2. Ulrich Bauer, Michael Kerber, Fabian Roll, and Alexander Rolle. A unified view on the functorial nerve theorem and its variations, 2022. URL: https://arxiv.org/abs/2203.03571.
  3. Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald R. Sheehy. Efficient and robust persistent homology for measures. Computational Geometry, 58:70-96, 2016. Google Scholar
  4. Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability measures. Foundations of Computational Mathematics, 11:733-751, 2011. Google Scholar
  5. Frédéric Chazal and Steve Oudot. Towards persistence-based reconstruction in euclidean spaces. Proceedings of the Annual Symposium on Computational Geometry, 2008. URL: https://doi.org/10.1145/1377676.1377719.
  6. David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37:103-120, 2007. Google Scholar
  7. B.C. Eaves. A Course in Triangulations for Solving Equations with Deformations. Lecture notes in economics and mathematical systems. Springer-Verlag, 1984. Google Scholar
  8. Herbert Edelsbrunner and John Harer. Persistent homology—a survey. Discrete & Computational Geometry - DCG, 453, 2008. URL: https://doi.org/10.1090/conm/453/08802.
  9. Herbert Edelsbrunner and Ernst Mucke. Three-dimensional alpha shapes. ACM Transactions on Graphics, 13, 1994. URL: https://doi.org/10.1145/147130.147153.
  10. Hans Freudenthal. Simplizialzerlegungen von beschrankter flachheit. Annals of Mathematics, 43:580, 1942. Google Scholar
  11. Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357-362, 2020. Google Scholar
  12. Jean-Bernard Lasserre and Edouard Pauwels. The empirical Christoffel function with applications in data analysis. Advances in Computational Mathematics, 45(3):1439-1468, 2019. Google Scholar
  13. Jean-Bernard Lasserre, Edouard Pauwels, and Mihai Putinar. The Christoffel–Darboux Kernel for Data Analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2022. URL: https://doi.org/10.1017/9781108937078.
  14. Swann Marx, Edouard Pauwels, Tillmann Weisser, Didier Henrion, and Jean-Bernard Lasserre. Semi-algebraic approximation using Christoffel–Darboux kernel. Constructive Approximation, 54:391-429, 2021. Google Scholar
  15. Edouard Pauwels, Mihai Putinar, and Jean-Bernard Lasserre. Data analysis from empirical moments and the Christoffel function. Foundations of Computational Mathematics, 21(1):243-273, 2021. URL: https://doi.org/10.1007/s10208-020-09451-2.
  16. Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019. Google Scholar
  17. Pepijn Roos Hoefgeest and Lucas Slot. The Christoffel-Darboux kernel for topological data analysis (full version). URL: https://arxiv.org/abs/2211.15489.
  18. Vin Silva and Gunnar Carlsson. Topological estimation using witness complexes. Proc. Sympos. Point-Based Graphics, 2004. URL: https://doi.org/10.2312/SPBG/SPBG04/157-166.
  19. Bernadette J. Stolz. Outlier-robust subsampling techniques for persistent homology, 2021. URL: https://arxiv.org/abs/2103.14743.
  20. The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015. URL: http://gudhi.gforge.inria.fr/doc/latest/.
  21. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261-272, 2020. Google Scholar
  22. Mai Trang Vu, François Bachoc, and Edouard Pauwels. Rate of convergence for geometric inference based on the empirical Christoffel function. ESAIM: PS, 26:171-207, 2022. Google Scholar
  23. Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete and Computational Geometry, 33:249-274, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail