Document

# Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function

## File

LIPIcs.SoCG.2023.47.pdf
• Filesize: 0.76 MB
• 17 pages

## Cite As

Hung Le, Lazar Milenković, and Shay Solomon. Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 47:1-47:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SoCG.2023.47

## Abstract

In STOC'95 [S. Arya et al., 1995] Arya et al. showed that any set of n points in ℝ^d admits a (1+ε)-spanner with hop-diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges). They also gave a general upper bound tradeoff of hop-diameter k with O(n α_k(n)) edges, for any k ≥ 2. The function α_k is the inverse of a certain Ackermann-style function, where α₀(n) = ⌈n/2⌉, α₁(n) = ⌈√n⌉, α₂(n) = ⌈log n⌉, α₃(n) = ⌈log log n⌉, α₄(n) = log^* n, α₅(n) = ⌊ 1/2 log^*n ⌋, …. Roughly speaking, for k ≥ 2 the function α_{k} is close to ⌊(k-2)/2⌋-iterated log-star function, i.e., log with ⌊(k-2)/2⌋ stars. Despite a large body of work on spanners of bounded hop-diameter, the fundamental question of whether this tradeoff between size and hop-diameter of Euclidean (1+ε)-spanners is optimal has remained open, even in one-dimensional spaces. Three lower bound tradeoffs are known: - An optimal k versus Ω(n α_k(n)) by Alon and Schieber [N. Alon and B. Schieber, 1987], but it applies to stretch 1 (not 1+ε). - A suboptimal k versus Ω(nα_{2k+6}(n)) by Chan and Gupta [H. T.-H. Chan and A. Gupta, 2006]. - A suboptimal k versus Ω(n/(2^{6⌊k/2⌋}) α_k(n)) by Le et al. [Le et al., 2022]. This paper establishes the optimal k versus Ω(n α_k(n)) lower bound tradeoff for stretch 1+ε, for any ε > 0, and for any k. An important conceptual contribution of this work is in achieving optimality by shaving off an extremely slowly growing term, namely 2^{6⌊k/2⌋} for k ≤ O(α(n)); such a fine-grained optimization (that achieves optimality) is very rare in the literature. To shave off the 2^{6⌊k/2⌋} term from the previous bound of Le et al., our argument has to drill much deeper. In particular, we propose a new way of analyzing recurrences that involve inverse-Ackermann style functions, and our key technical contribution is in presenting the first explicit construction of concave versions of these functions. An important advantage of our approach over previous ones is its robustness: While all previous lower bounds are applicable only to restricted 1-dimensional point sets, ours applies even to random point sets in constant-dimensional spaces.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Sparsification and spanners
##### Keywords
• Euclidean spanners
• Ackermann functions
• convex functions
• hop-diameter

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. I. Abraham and D. Malkhi. Compact routing on Euclidean metrics. In Proc. of 23rd PODC, pages 141-149, 2004.
2. P. K. Agarwal, Y. Wang, and P. Yin. Lower bound for sparse Euclidean spanners. In Proc. of 16th SODA, pages 670-671, 2005.
3. Pankaj K. Agarwal, Micha Sharir, and Peter W. Shor. Sharp upper and lower bounds on the length of general davenport-schinzel sequences. J. Comb. Theory, Ser. A, 52(2):228-274, 1989.
4. N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Manuscript, 1987.
5. I. Altḧofer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81-100, 1993.
6. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M. Smid. Euclidean spanners: short, thin, and lanky. In Proc. of 27th STOC, pages 489-498, 1995.
7. S. Arya, D. M. Mount, and M. H. M. Smid. Randomized and deterministic algorithms for geometric spanners of small diameter. In Proc. of 35th FOCS, pages 703-712, 1994.
8. S. Arya and M. H. M. Smid. Efficient construction of a bounded degree spanner with low weight. Algorithmica, 17(1):33-54, 1997.
9. Yair Bartal, Nova Fandina, and Ofer Neiman. Covering metric spaces by few trees. In ICALP, volume 132 of LIPIcs, pages 20:1-20:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
10. Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P. Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380-1425, 2012.
11. H. L. Bodlaender, G. Tel, and N. Santoro. Trade-offs in non-reversing diameter. Nord. J. Comput., 1(1):111-134, 1994.
12. P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in higher dimensions. In Proc. of 4th SODA, pages 291-300, 1993.
13. H. T.-H. Chan and A. Gupta. Small hop-diameter sparse spanners for doubling metrics. In Proc. of 17th SODA, pages 70-78, 2006.
14. B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica, 2:337-361, 1987.
15. B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity. Journal of the ACM, 47(6):1028-1047, 2000. URL: https://doi.org/10.1145/355541.355562.
16. B. Chazelle and B. Rosenberg. The complexity of computing partial sums off-line. Int. J. Comput. Geom. Appl., 1:33-45, 1991.
17. L. P. Chew. There is a planar graph almost as good as the complete graph. In Proc. of 2nd SOCG, pages 169-177, 1986.
18. K. Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC `87, pages 56-65, 1987.
19. G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners. In Proc. of 10th SOCG, pages 132-139, 1994.
20. G. Das, G. Narasimhan, and J. S. Salowe. A new way to weigh malnourished Euclidean graphs. In Proc. of 6th SODA, pages 215-222, 1995.
21. Y. Dinitz, M. Elkin, and S. Solomon. Low-light trees, and tight lower bounds for Euclidean spanners. Discrete & Computational Geometry, 43(4):736-783, 2010.
22. E. Szemerédi. On a problem of Davenport and Schinzel. Acta Arith., 25, 1973.
23. Michael Elkin and Shay Solomon. Optimal euclidean spanners: Really short, thin, and lanky. J. ACM, 62(5):35:1-35:45, 2015.
24. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences, 48(3):533-551, 1994. Announced at FOCS`90. URL: https://doi.org/10.1016/s0022-0000(05)80064-9.
25. Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures. In STOC, pages 345-354. ACM, 1989.
26. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Approximate distance oracles for geometric graphs. In Proc. of 13th SODA, pages 828-837, 2002.
27. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Approximate distance oracles for geometric spanners. ACM Transactions on Algorithms, 4(1), 2008.
28. J. Gudmundsson, G. Narasimhan, and M. H. M. Smid. Fast pruning of geometric spanners. In Proc. of 22nd STACS, pages 508-520, 2005.
29. H. Davenport and A. Schinzel. A combinatorial problem connected with differential equations. Am. J. Math, 1965.
30. Sergiu Hart and Micha Sharir. Nonlinearity of davenport - schinzel sequences and of generalized path compression schemes. Comb., 6(2):151-178, 1986.
31. Y. Hassin and D. Peleg. Sparse communication networks and efficient routing in the plane. In Proc. of 19th PODC, pages 41-50, 2000.
32. Omri Kahalon, Hung Le, Lazar Milenkovic, and Shay Solomon. Can't see the forest for the trees: Navigating metric spaces by bounded hop-diameter spanners. In PODC, pages 151-162. ACM, 2022.
33. D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM, 42(2):321-328, 1995. URL: https://doi.org/10.1145/201019.201022.
34. J. M. Keil. Approximating the complete Euclidean graph. In Proc. of 1st SWAT, pages 208-213, 1988.
35. J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean graph. Discrete & Computational Geometry, 7:13-28, 1992.
36. Valerie King. A simpler minimum spanning tree verification algorithm. Algorithmica, 18(2):263-270, 1997.
37. János Komlós. Linear verification for spanning trees. Comb., 5(1):57-65, 1985.
38. Hung Le, Lazar Milenkovic, and Shay Solomon. Sparse euclidean spanners with tiny diameter: A tight lower bound. In SoCG, volume 224 of LIPIcs, pages 54:1-54:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
39. Hung Le and Shay Solomon. Truly optimal euclidean spanners. In FOCS, pages 1078-1100. IEEE Computer Society, 2019.
40. C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Efficient algorithms for constructing fault-tolerant geometric spanners. In Proc. of 30th STOC, pages 186-195, 1998.
41. Y. Mansour and D. Peleg. An approximation algorithm for min-cost network design. DIMACS Series in Discr. Math and TCS, 53:97-106, 2000.
42. G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press, 2007.
43. Gabriel Nivasch. Improved bounds and new techniques for davenport-schinzel sequences and their generalizations. J. ACM, 57(3):17:1-17:44, 2010.
44. Seth Pettie. An inverse-ackermann type lower bound for online minimum spanning tree verification. Comb., 26(2):207-230, 2006.
45. Seth Pettie. Sharp bounds on davenport-schinzel sequences of every order. J. ACM, 62(5):36:1-36:40, 2015.
46. M. Pǎtraşcu and E. D. Demaine. Tight bounds for the partial-sums problem. In Proc. of 15th SODA, pages 20-29, 2004.
47. S. Rao and W. D. Smith. Approximating geometrical graphs via "spanners" and "banyans". In Proc. of 30th STOC, pages 540-550, 1998.
48. J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph. In Proc. of 3rd CCCG, pages 207-210, 1991.
49. Micha Sharir. Almost linear upper bounds on the length of general davenport-schinzel sequences. Comb., 7(1):131-143, 1987.
50. Micha Sharir. Improved lower bounds on the length of davenport - schinzel sequences. Comb., 8(1):117-124, 1988.
51. S. Solomon and M. Elkin. Balancing degree, diameter and weight in Euclidean spanners. In Proc. of 18th ESA, Part 1, pages 48-59, 2010.
52. Shay Solomon. Sparse euclidean spanners with tiny diameter. ACM Trans. Algorithms, 9(3):28:1-28:33, 2013.
53. Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In STOC, pages 363-372. ACM, 2014.
54. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215-225, 1975.
55. R. E. Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690-715, 1979.
56. Mikkel Thorup. Shortcutting planar digraphs. Comb. Probab. Comput., 4:287-315, 1995.
57. Mikkel Thorup. Parallel shortcutting of rooted trees. J. Algorithms, 23(1):139-159, 1997.
58. A. C. Yao. Space-time tradeoff for answering range queries. In Proc. of 14th STOC, pages 128-136, 1982.