Approximating convex bodies is a fundamental question in geometry and has a wide variety of applications. Consider a convex body K of diameter Δ in ℝ^d for fixed d. The objective is to minimize the number of vertices (alternatively, the number of facets) of an approximating polytope for a given Hausdorff error ε. It is known from classical results of Dudley (1974) and Bronshteyn and Ivanov (1976) that Θ((Δ/ε)^{(d-1)/2}) vertices (alternatively, facets) are both necessary and sufficient. While this bound is tight in the worst case, that of Euclidean balls, it is far from optimal for skinny convex bodies. A natural way to characterize a convex object’s skinniness is in terms of its relationship to the Euclidean ball. Given a convex body K, define its volume diameter Δ_d to be the diameter of a Euclidean ball of the same volume as K, and define its surface diameter Δ_{d-1} analogously for surface area. It follows from generalizations of the isoperimetric inequality that Δ ≥ Δ_{d-1} ≥ Δ_d. Arya, da Fonseca, and Mount (SoCG 2012) demonstrated that the diameter-based bound could be made surface-area sensitive, improving the above bound to O((Δ_{d-1}/ε)^{(d-1)/2}). In this paper, we strengthen this by proving the existence of an approximation with O((Δ_d/ε)^{(d-1)/2}) facets. This improvement is a result of the combination of a number of new ideas. As in prior work, we exploit properties of the original body and its polar dual. In order to obtain a volume-sensitive bound, we explore the following more general problem. Given two convex bodies, one nested within the other, find a low-complexity convex polytope that is sandwiched between them. We show that this problem can be reduced to a covering problem involving a natural intermediate body based on the harmonic mean. Our proof relies on a geometric analysis of a relative notion of fatness involving these bodies.
@InProceedings{arya_et_al:LIPIcs.SoCG.2023.9, author = {Arya, Sunil and Mount, David M.}, title = {{Optimal Volume-Sensitive Bounds for Polytope Approximation}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {9:1--9:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.9}, URN = {urn:nbn:de:0030-drops-178592}, doi = {10.4230/LIPIcs.SoCG.2023.9}, annote = {Keywords: Approximation algorithms, convexity, Macbeath regions} }
Feedback for Dagstuhl Publishing