Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal Domain

Authors Sarita de Berg, Tillmann Miltzow, Frank Staals



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.17.pdf
  • Filesize: 1.06 MB
  • 16 pages

Document Identifiers

Author Details

Sarita de Berg
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Tillmann Miltzow
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Frank Staals
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands

Cite AsGet BibTex

Sarita de Berg, Tillmann Miltzow, and Frank Staals. Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal Domain. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.17

Abstract

We devise a data structure that can answer shortest path queries for two query points in a polygonal domain P on n vertices. For any ε > 0, the space complexity of the data structure is O(n^{10+ε}) and queries can be answered in O(log n) time. Alternatively, we can achieve a space complexity of O(n^{9+ε}) by relaxing the query time to O(log² n). This is the first improvement upon a conference paper by Chiang and Mitchell from 1999. They presented a data structure with O(n^{11}) space complexity and O(log n) query time. Our main result can be extended to include a space-time trade-off. Specifically, we devise data structures with O(n^{9+ε}/𝓁^{4+O(ε)}) space complexity and O(𝓁 log² n) query time, for any integer 1 ≤ 𝓁 ≤ n. Furthermore, we present improved data structures for the special case where we restrict one (or both) of the query points to lie on the boundary of P. When one of the query points is restricted to lie on the boundary, and the other query point is unrestricted, the space complexity becomes O(n^{6+ε}) and the query time O(log²n). When both query points are on the boundary, the space complexity is decreased further to O(n^{4+ε}) and the query time to O(log n), thereby improving an earlier result of Bae and Okamoto.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • data structure
  • polygonal domain
  • geodesic distance

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, Lars Arge, and Frank Staals. Improved dynamic geodesic nearest neighbor searching in a simple polygon. In Proceedings of the 34th International Symposium on Computational Geometry, SoCG, volume 99 of LIPIcs, pages 4:1-4:14, 2018. Google Scholar
  2. Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. Efficient algorithm for generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760-787, 2021. URL: https://doi.org/10.1137/19M1268550.
  3. Pankaj K. Agarwal, Boris Aronov, and Micha Sharir. Computing envelopes in four dimensions with applications. SIAM J. Comput., 26(6):1714-1732, 1997. URL: https://doi.org/10.1137/S0097539794265724.
  4. Pankaj K. Agarwal and Jirí Matoušek. On range searching with semialgebraic sets. Discret. Comput. Geom., 11:393-418, 1994. URL: https://doi.org/10.1007/BF02574015.
  5. Sang Won Bae, Matias Korman, and Yoshio Okamoto. The geodesic diameter of polygonal domains. Discret. Comput. Geom., 50(2):306-329, 2013. Google Scholar
  6. Sang Won Bae and Yoshio Okamoto. Querying two boundary points for shortest paths in a polygonal domain. Comput. Geom., 45(7):284-293, 2012. URL: https://doi.org/10.1016/J.COMGEO.2012.01.012.
  7. Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom., 9:145-158, 1993. Google Scholar
  8. Danny Z. Chen. On the all-pairs Euclidean short path problem. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 292-301, 1995. Google Scholar
  9. Danny Z. Chen, Ovidiu Daescu, and Kevin S. Klenk. On geometric path query problems. Int. J. Comput. Geom. Appl., 11(06):617-645, 2001. Google Scholar
  10. Danny Z. Chen, Rajasekhar Inkulu, and Haitao Wang. Two-point L₁ shortest path queries in the plane. J. Comput. Geom., 7(1):473-519, 2016. Google Scholar
  11. Danny Z. Chen, Kevin S. Klenk, and Hung-Yi T. Tu. Shortest path queries among weighted obstacles in the rectilinear plane. SIAM Journal on Computing, 29(4):1223-1246, 2000. Google Scholar
  12. Yi-Jen Chiang and Joseph S. B. Mitchell. Two-point Euclidean shortest path queries in the plane. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 215-224, 1999. URL: http://dl.acm.org/citation.cfm?id=314500.314560.
  13. Kenneth L. Clarkson. New applications of random sampling in computational geometry. Discret. Comput. Geom., 2:195-222, 1987. URL: https://doi.org/10.1007/BF02187879.
  14. Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008. Google Scholar
  15. Sarita de Berg and Frank Staals. Dynamic data structures for k-nearest neighbor queries. In Proceedings of the 32nd International Symposium on Algorithms and Computation, ISAAC, volume 212 of LIPIcs, pages 14:1-14:14, 2021. Google Scholar
  16. Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals. Trajectory visibility. In Proceedings of the 17th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT, volume 162 of LIPIcs, pages 23:1-23:22, 2020. URL: https://doi.org/10.4230/LIPICS.SWAT.2020.23.
  17. Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a monotone subdivision. SIAM J. Comput., 15(2):317-340, 1986. URL: https://doi.org/10.1137/0215023.
  18. Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci., 39(2):126-152, 1989. URL: https://doi.org/10.1016/0022-0000(89)90041-X.
  19. Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2(1):209-233, 1987. Google Scholar
  20. Hua Guo, Anil Maheshwari, and Jörg-Rüdiger Sack. Shortest path queries in polygonal domains. In Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management, AAIM, volume 5034 of Lecture Notes in Computer Science, pages 200-211. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-68880-8_20.
  21. Mart Hagedoorn and Valentin Polishchuk. 2-point link distance queries in polygonal domains. In Proceedings of the 39th European Workshop on Computational Geometry, EuroCG, pages 229-234, 2023. Google Scholar
  22. John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homotopy class. Computational Geometry, 4(2):63-97, 1994. Google Scholar
  23. John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput., 28(6):2215-2256, 1999. URL: https://doi.org/10.1137/S0097539795289604.
  24. Vladlen Koltun. Almost tight upper bounds for vertical decompositions in four dimensions. J. ACM, 51(5):699-730, 2004. URL: https://doi.org/10.1145/1017460.1017461.
  25. Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals. Kinetic geodesic Voronoi diagrams in a simple polygon. In Proceedings of the 47th International Colloquium on Automata, Languages, and Programming, ICALP, volume 168 of LIPIcs, pages 75:1-75:17, 2020. URL: https://doi.org/10.4230/LIPICS.ICALP.2020.75.
  26. Joseph SB Mitchell. Shortest paths among obstacles in the plane. In Proceedings of the 9th annual Symposium on Computational Geometry, SoCG, pages 308-317, 1993. Google Scholar
  27. Eunjin Oh. Optimal algorithm for geodesic nearest-point Voronoi diagrams in simple polygons. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 391-409. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.25.
  28. Michel Pocchiola and Gert Vegter. The visibility complex. Int. J. Comput. Geom. Appl., 06(03):279-308, 1996. Google Scholar
  29. Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discret. Comput. Geom., 12:327-345, 1994. URL: https://doi.org/10.1007/BF02574384.
  30. Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric applications. Cambridge University Press, 1995. Google Scholar
  31. Mikkel Thorup. Compact oracles for approximate distances around obstacles in the plane. In Proceedings of the 15th Annual European Symposium, ESA, volume 4698 of Lecture Notes in Computer Science, pages 383-394. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-75520-3_35.
  32. Haitao Wang. On the geodesic centers of polygonal domains. J. Comput. Geom., 9(1):131-190, 2018. Google Scholar
  33. Haitao Wang. A divide-and-conquer algorithm for two-point L₁ shortest path queries in polygonal domains. J. Comput. Geom., 11(1):235-282, 2020. URL: https://doi.org/10.20382/JOCG.V11I1A10.
  34. Haitao Wang. An optimal deterministic algorithm for geodesic farthest-point Voronoi diagrams in simple polygons. In Proceedings of the 37th International Symposium on Computational Geometry, SoCG, volume 189 of LIPIcs, pages 59:1-59:15, 2021. Google Scholar
  35. Haitao Wang. Shortest paths among obstacles in the plane revisited. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 810-821. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.51.
  36. Haitao Wang. A new algorithm for Euclidean shortest paths in the plane. J. ACM, 70(2):11:1-11:62, 2023. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail