A Quadtree, a Steiner Spanner, and Approximate Nearest Neighbours in Hyperbolic Space

Authors Sándor Kisfaludi-Bak , Geert van Wordragen



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.68.pdf
  • Filesize: 0.76 MB
  • 15 pages

Document Identifiers

Author Details

Sándor Kisfaludi-Bak
  • Department of Computer Science, Aalto University, Finland
Geert van Wordragen
  • Department of Computer Science, Aalto University, Finland

Cite AsGet BibTex

Sándor Kisfaludi-Bak and Geert van Wordragen. A Quadtree, a Steiner Spanner, and Approximate Nearest Neighbours in Hyperbolic Space. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 68:1-68:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.68

Abstract

We propose a data structure in d-dimensional hyperbolic space that can be considered a natural counterpart to quadtrees in Euclidean spaces. Based on this data structure we propose a so-called L-order for hyperbolic point sets, which is an extension of the Z-order defined in Euclidean spaces. Using these quadtrees and the L-order we build geometric spanners. Near-linear size (1+ε)-spanners do not exist in hyperbolic spaces, but we create a Steiner spanner that achieves a spanning ratio of 1+ε with O_{d,ε}(n) edges, using a simple construction that can be maintained dynamically. As a corollary we also get a (2+ε)-spanner (in the classical sense) of the same size, where the spanning ratio 2+ε is almost optimal among spanners of subquadratic size. Finally, we show that our Steiner spanner directly provides an elegant solution to the approximate nearest neighbour problem: given a point set P in d-dimensional hyperbolic space we build the data structure in O_{d,ε}(nlog n) time, using O_{d,ε}(n) space. Then for any query point q we can find a point p ∈ P that is at most 1+ε times farther from q than its nearest neighbour in P in O_{d,ε}(log n) time. Moreover, the data structure is dynamic and can handle point insertions and deletions with update time O_{d,ε}(log n). This is the first dynamic nearest neighbour data structure in hyperbolic space with proven efficiency guarantees.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Approximation algorithms analysis
  • Theory of computation → Nearest neighbor algorithms
Keywords
  • hyperbolic geometry
  • Steiner spanner
  • dynamic approximate nearest neighbours

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Srinivas Aluru. Quadtrees and octrees. In Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. URL: https://doi.org/10.1201/9781420035179.ch19.
  2. Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-time tradeoffs for approximate nearest neighbor searching. J. ACM, 57(1), November 2009. URL: https://doi.org/10.1145/1613676.1613677.
  3. Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891-923, November 1998. URL: https://doi.org/10.1145/293347.293348.
  4. Riccardo Benedetti and Carlo Petronio. Lectures on Hyperbolic Geometry. Springer Science & Business Media, 1992. Google Scholar
  5. Itai Benjamini and Yury Makarychev. Dimension reduction for hyperbolic space. Proceedings of the American Mathematical Society, 137(2):695-698, 2009. Google Scholar
  6. Sujoy Bhore and Csaba D. Tóth. Euclidean Steiner spanners: Light and sparse. SIAM J. Discret. Math., 36(3):2411-2444, 2022. URL: https://doi.org/10.1137/22m1502707.
  7. Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck, and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic random graphs. Netw. Sci., 10(4):361-380, 2022. URL: https://doi.org/10.1017/nws.2022.32.
  8. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic random graphs: Separators and treewidth. In 24th Annual European Symposium on Algorithms, ESA 2016, volume 57 of LIPIcs, pages 15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.15.
  9. Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the largest component of a hyperbolic model of complex networks. The Electronic Journal of Combinatorics, pages P3-24, 2015. Google Scholar
  10. Mikhail Bogdanov, Olivier Devillers, and Monique Teillaud. Hyperbolic Delaunay triangulations and Voronoi diagrams made practical. In XIV Spanish Meeting on Computational Geometry,, 2011. Google Scholar
  11. Károly Böröczky. Gömbkitöltések állandó görbületű terekben I. Matematikai Lapok (in Hungarian), 25(3-4):265-306, 1974. Google Scholar
  12. Prosenjit Bose, Paz Carmi, Mohammad Farshi, Anil Maheshwari, and Michiel H. M. Smid. Computing the greedy spanner in near-quadratic time. Algorithmica, 58(3):711-729, 2010. URL: https://doi.org/10.1007/s00453-009-9293-4.
  13. Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs. Theor. Comput. Sci., 760:35-54, 2019. URL: https://doi.org/10.1016/j.tcs.2018.08.014.
  14. Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67-90, 1995. URL: https://doi.org/10.1145/200836.200853.
  15. James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry. Flavors of Geometry, 31(59-115):2, 1997. Google Scholar
  16. Timothy M. Chan. Approximate nearest neighbor queries revisited. Discrete & Computational Geometry, 20(3):359-373, October 1998. URL: https://doi.org/10.1007/PL00009390.
  17. Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. On locality-sensitive orderings and their applications. SIAM Journal on Computing, 49(3):583-600, 2020. URL: https://doi.org/10.1137/19M1246493.
  18. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001. Google Scholar
  19. Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.worldcat.org/oclc/227584184.
  20. Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures for fat objects and their applications. Computational Geometry, 15(4):215-227, 2000. URL: https://doi.org/10.1016/S0925-7721(99)00059-0.
  21. David Eppstein. Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition. ACM Trans. Algorithms, 5(3):29:1-29:24, 2009. URL: https://doi.org/10.1145/1541885.1541890.
  22. Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on composite keys. Acta Informatica, 4:1-9, 1974. URL: https://doi.org/10.1007/BF00288933.
  23. Nikolaos Fountoulakis and Tobias Müller. Law of large numbers for the largest component in a hyperbolic model of complex networks. The Annals of Applied Probability, 28(1):607-650, 2018. URL: https://doi.org/10.1214/17-AAP1314.
  24. Tobias Friedrich and Anton Krohmer. On the diameter of hyperbolic random graphs. SIAM J. Discret. Math., 32(2):1314-1334, 2018. URL: https://doi.org/10.1137/17M1123961.
  25. Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, pages 5350-5360, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/dbab2adc8f9d078009ee3fa810bea142-Abstract.html.
  26. Zhimeng Gao and Sariel Har-Peled. Almost optimal locality sensitive orderings in euclidean space. CoRR, abs/2310.12792, 2023. To appear in SoCG 2024. URL: https://doi.org/10.48550/arXiv.2310.12792.
  27. Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society, USA, 2011. Google Scholar
  28. Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards removing the curse of dimensionality. Theory Comput., 8(1):321-350, 2012. URL: https://doi.org/10.4086/toc.2012.v008a014.
  29. Birger Iversen. Hyperbolic geometry. Number 25 in London Mathematical Society Student Texts. Cambridge University Press, 1992. Google Scholar
  30. Sándor Kisfaludi-Bak. A quasi-polynomial algorithm for well-spaced hyperbolic TSP. J. Comput. Geom., 12(2):25-54, 2021. URL: https://doi.org/10.20382/jocg.v12i2a3.
  31. Sándor Kisfaludi-Bak and Geert van Wordragen. A quadtree, a steiner spanner, and approximate nearest neighbours in hyperbolic space. CoRR, abs/2305.01356, 2023. URL: https://doi.org/10.48550/arXiv.2305.01356.
  32. Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pages 119-132. IEEE Computer Society, 2006. URL: https://doi.org/10.1109/FOCS.2006.9.
  33. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010. Google Scholar
  34. John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 401-408, 1995. Google Scholar
  35. Hung Le and Shay Solomon. Truly optimal euclidean spanners. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1078-1100, 2019. URL: https://doi.org/10.1109/FOCS.2019.00069.
  36. Guy M Morton. A computer oriented geodetic data base and a new technique in file sequencing. Technical report, International Business Machines Company New York, 1966. Google Scholar
  37. Tobias Müller and Merlijn Staps. The diameter of KPKVB random graphs. Advances in Applied Probability, 51(2):358-377, 2019. URL: http://www.jstor.org/stable/45277962.
  38. Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press, 2007. Google Scholar
  39. Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, volume 80 of Proceedings of Machine Learning Research, pages 3776-3785. PMLR, 2018. URL: http://proceedings.mlr.press/v80/nickel18a.html.
  40. Frank Nielsen and Richard Nock. Hyperbolic Voronoi diagrams made easy. In Prodeedings of the 2010 International Conference on Computational Science and Its Applications, ICCSA 2010, pages 74-80. IEEE Computer Society, 2010. URL: https://doi.org/10.1109/ICCSA.2010.37.
  41. Eunku Park and Antoine Vigneron. Embeddings and near-neighbor searching with constant additive error for hyperbolic spaces, 2024. URL: https://arxiv.org/abs/2402.14604.
  42. Liudmila Prokhorenkova, Dmitry Baranchuk, Nikolay Bogachev, Yury Demidovich, and Alexander Kolpakov. Graph-based nearest neighbor search in hyperbolic spaces. In International Conference on Learning Representations, 2022. URL: https://openreview.net/forum?id=USIgIY6TNDe.
  43. William P Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bulletin (New Series) of the american mathematical society, 6(3):357-381, 1982. Google Scholar
  44. William P Thurston. Three-dimensional geometry and topology, volume 1. Princeton Mathematical Series, Vol. 35, 1997. Google Scholar
  45. Abraham A Ungar. Einstein’s special relativity: The hyperbolic geometric viewpoint. arXiv preprint, 2013. URL: https://arxiv.org/abs/1302.6961.
  46. Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyperbolic graphs in subquadratic time. In Algorithms and Computation - 26th International Symposium, ISAAC, volume 9472 of Lecture Notes in Computer Science, pages 467-478. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48971-0_40.
  47. Xian Wu and Moses Charikar. Nearest neighbor search for hyperbolic embeddings. CoRR, abs/2009.00836, 2020. URL: https://arxiv.org/abs/2009.00836.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail