Classical Simulation of Yang-Baxter Gates

Authors Gorjan Alagic, Aniruddha Bapat, Stephen Jordan



PDF
Thumbnail PDF

File

LIPIcs.TQC.2014.161.pdf
  • Filesize: 421 kB
  • 15 pages

Document Identifiers

Author Details

Gorjan Alagic
Aniruddha Bapat
Stephen Jordan

Cite AsGet BibTex

Gorjan Alagic, Aniruddha Bapat, and Stephen Jordan. Classical Simulation of Yang-Baxter Gates. In 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 27, pp. 161-175, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
https://doi.org/10.4230/LIPIcs.TQC.2014.161

Abstract

A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group B_n for every n >= 2. If we view such an operator as a quantum-computational gate, then topological braiding corresponds to a quantum circuit. A basic question is when such a representation affords universal quantum computation. In this work, we show how to classically simulate these circuits when the gate in question belongs to certain families of solutions to the Yang-Baxter equation. These include all of the qubit (i.e., d = 2) solutions, and some simple families that include solutions for arbitrary d >= 2. Our main tool is a probabilistic classical algorithm for efficient simulation of a more general class of quantum circuits. This algorithm may be of use outside the present setting.
Keywords
  • Quantum
  • Yang-Baxter
  • Braid
  • Anyon

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Emil Artin. Theorie der Zopfe. Abh. Math. Sem. Univ. Hamburg, 4:47-72, 1925. Google Scholar
  2. John C. Baez. Braids and quantization (online lecture notes), May 1992. Google Scholar
  3. M. Bremner, R. Jozsa, and D. J. Sheperd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. A, 467:459, 2011. Google Scholar
  4. J. L. Brylinski and R. Brylinski. Universal quantum gates. In Mathematics of Quantum Computation. Chapman & Hall, 2002. Google Scholar
  5. H. A. Dye. Unitary solutions to the Yang-Baxter equation in dimension four. Quantum Information Processing, 2(1/2):117-152, April 2003. Google Scholar
  6. Jennifer M. Franko. Braid group representations arising from the Yang-Baxter equation. Journal of Knot Theory and Its Ramifications, 19(04):525-538, 2010. Google Scholar
  7. Jennifer M. Franko, Eric C. Rowell, and Zhenghan Wang. Extraspecial 2-groups and images of braid group representations. Journal of Knot Theory and Its Ramifications, 15(04):413-427, 2006. Google Scholar
  8. Michael H. Freedman, Alexei Kitaev, and Zhenghan Wang. Simulation of topological field theories by quantum computers. Communications in Mathematical Physics, 227:587-603, 2002. Google Scholar
  9. Michael H. Freedman, Michael J. Larsen, and Zhenghan Wang. A modular functor which is universal for quantum computation. Communications in Mathematical Physics, 227:605-622, 2002. Google Scholar
  10. Michael H. Freedman, Michael J. Larsen, and Zhenghan Wang. The two-eigenvalue problem and density of Jones representation of braid groups. Communications in Mathematical Physics, 228:177-199, 2002. Google Scholar
  11. Daniel Gottesman. The Heisenberg representation of quantum computers. Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics, 22:32-43, 1999. Google Scholar
  12. Jarmo Hietarinta. Solving the two-dimensional constant quantum Yang-Baxter equation. Journal of Mathematical Physics, 34(5):1725-1756, 1993. Google Scholar
  13. Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58:13-30, 1963. Google Scholar
  14. Dominik Janzing and Pawel Wocjan. A simple PromiseBQP-complete matrix problem. Theory of Computing, 3(4):61-79, 2007. Google Scholar
  15. Vaughan F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.), 12(1):103-111, 1985. Google Scholar
  16. R. Jozsa and A. Miyake. Matchgates and classical simulation of quantum circuits. Royal Society of London Proceedings Series A, 464:3089-3106, December 2008. Google Scholar
  17. Richard Jozsa and Maarten Van den Nest. Classical simulation complexity of extended clifford circuits. arXiv, 2013. Google Scholar
  18. Louis H. Kauffman and Samuel J. Lomonaco Jr. Braiding operators are universal quantum gates. New Journal of Physics, 6(1):134, 2004. Google Scholar
  19. Gabriele Nebe, E. M. Rains, and N. J. A. Sloane. The invariants of the Clifford groups. Designs, Codes and Cryptography, 24(1):99-122, 2001. Google Scholar
  20. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. Google Scholar
  21. J. H. H. Perk and H. Au-Yang. Yang-Baxter equation. In Encyclopedia of Mathematical Physics, pages 465-473. Oxford: Elsevier, 2006. Google Scholar
  22. John Preskill. Topological quantum computation (online lecture notes), 2004. Google Scholar
  23. Eric C. Rowell and Zhenghan Wang. Localization of unitary braid group representations. Communications in Mathematical Physics, 311(3):595-615, 2012. Google Scholar
  24. V. G. Turaev. The Yang-Baxter equation and invariants of links. Invent. Math., 92:527-553, 1988. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail