On the Qubit Routing Problem

Authors Alexander Cowtan, Silas Dilkes, Ross Duncan , Alexandre Krajenbrink, Will Simmons, Seyon Sivarajah



PDF
Thumbnail PDF

File

LIPIcs.TQC.2019.5.pdf
  • Filesize: 1.13 MB
  • 32 pages

Document Identifiers

Author Details

Alexander Cowtan
  • Cambridge Quantum Computing Ltd, 9a Bridge Street, Cambridge, CB2 1UB, United Kingdom
Silas Dilkes
  • Cambridge Quantum Computing Ltd, 9a Bridge Street, Cambridge, CB2 1UB, United Kingdom
Ross Duncan
  • Cambridge Quantum Computing Ltd, 9a Bridge Street, Cambridge, CB2 1UB, United Kingdom
  • University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom
Alexandre Krajenbrink
  • Cambridge Quantum Computing Ltd, 9a Bridge Street, Cambridge, CB2 1UB, United Kingdom
  • Laboratoire de Physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Universités, 24 rue Lhomond, 75231 Paris Cedex 05, France
Will Simmons
  • Cambridge Quantum Computing Ltd, 9a Bridge Street, Cambridge, CB2 1UB, United Kingdom
Seyon Sivarajah
  • Cambridge Quantum Computing Ltd, 9a Bridge Street, Cambridge, CB2 1UB, United Kingdom

Acknowledgements

We thank Steven Herbert for many helpful conversations and encouragement.

Cite AsGet BibTex

Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons, and Seyon Sivarajah. On the Qubit Routing Problem. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 135, pp. 5:1-5:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.TQC.2019.5

Abstract

We introduce a new architecture-agnostic methodology for mapping abstract quantum circuits to realistic quantum computing devices with restricted qubit connectivity, as implemented by Cambridge Quantum Computing’s t|ket> compiler. We present empirical results showing the effectiveness of this method in terms of reducing two-qubit gate depth and two-qubit gate count, compared to other implementations.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum computation theory
  • Computer systems organization → Quantum computing
  • Hardware → Quantum computation
  • Software and its engineering → Compilers
  • Software and its engineering → Retargetable compilers
Keywords
  • Quantum Computing
  • Qubit routing
  • Compilation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. IBM Q. URL: https://www.research.ibm.com/ibm-q/.
  2. Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel Kutin, Noah Linden, Dan Shepherd, and Mark Stather. Efficient Distributed Quantum Computing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 469(2153), 2013. URL: http://dx.doi.org/10.1098/rspa.2012.0686.
  3. Édouard Bonnet, Tillmann Miltzow, and Paweł Rzążewski. Complexity of Token Swapping and Its Variants. Algorithmica, 80(9):2656-2682, September 2018. URL: http://dx.doi.org/10.1007/s00453-017-0387-0.
  4. Stephen Brierley. Efficient implementation of Quantum circuits with limited qubit interactions. Quantum Information and Computation, 17(13-14):1096-1104, 2015. URL: http://arxiv.org/abs/1507.04263.
  5. Steven Herbert. On the depth overhead incurred when running quantum algorithms on near-term quantum computers with limited qubit connectivity. arXiv preprint, 2018. URL: http://arxiv.org/abs/1805.12570.
  6. Steven Herbert and Akash Sengupta. Using Reinforcement Learning to find Efficient Qubit Routing Policies for Deployment in Near-term Quantum Computers. arXic preprint, 2018. URL: http://arxiv.org/abs/1812.11619.
  7. Yuichi Hirata, Masaki Nakanishi, Shigeru Yamashita, and Yasuhiko Nakashima. An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Information and Computation, 11:142-166, January 2011. Google Scholar
  8. Shien-Ching Hwang and Gen-Huey Chen. Cycles in butterfly graphs. Networks: An International Journal, 35(2):161-171, 2000. Google Scholar
  9. IBM Research. Qiskit. URL: https://qiskit.org.
  10. Mark R. Jerrum. The complexity of finding minimum-length generator sequences. Theoretical Computer Science, 36:265-289, 1985. URL: http://dx.doi.org/10.1016/0304-3975(85)90047-7.
  11. P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends, K. Arya, B. Chiaro, Yu Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey, Erik Lucero, J. Y. Mutus, O. Naaman, C. Neill, C. Quintana, P. Roushan, Daniel Sank, A. Vainsencher, J. Wenner, T. C. White, S. Boixo, R. Babbush, V. N. Smelyanskiy, H. Neven, and John M. Martinis. Fluctuations of Energy-Relaxation Times in Superconducting Qubits. Phys. Rev. Lett., 121:090502, August 2018. URL: http://dx.doi.org/10.1103/PhysRevLett.121.090502.
  12. J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. Schuyler Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson, G. Prawiroatmodjo, N. Rubin, Colm A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah, Robert S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, Blake R. Johnson, M. Reagor, M. P. da Silva, and C. Rigetti. Unsupervised Machine Learning on a Hybrid Quantum Computer. arXiv.org, 2017. URL: http://arxiv.org/abs/1712.05771.
  13. John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. URL: http://dx.doi.org/10.22331/q-2018-08-06-79.
  14. Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintão Pereira. Qubit allocation. In Proceedings of the 2018 International Symposium on Code Generation and Optimization, pages 113-125. ACM, 2018. Google Scholar
  15. Robert S. Smith, Michael J. Curtis, and William Zeng. A Practical Quantum Instruction Set Architecture. Technical report, Rigetti Computing, 2016. URL: http://arxiv.org/abs/1608.03355.
  16. Damian Steiger and Thomas Häner. Project Q: Powerful open source software for quantum computing. URL: https://projectq.ch [cited 28 January 2019].
  17. Swamit S. Tannu and Moinuddin K.Qureshi. A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. arXiv.org, 2018. URL: http://arxiv.org/abs/1805.10224.
  18. Stephen A Wong. Hamilton cycles and paths in butterfly graphs. Networks, 26(3):145-150, 1995. Google Scholar
  19. Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping Labeled Tokens on Graphs. In Alfredo Ferro, Fabrizio Luccio, and Peter Widmayer, editors, Fun with Algorithms, pages 364-375. Springer International Publishing, 2014. URL: http://dx.doi.org/10.1007/978-3-319-07890-8_31.
  20. Alwin Zulehner, Alexandru Paler, and Robert Wille. An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures. arXiv.org, 2017. URL: http://arxiv.org/abs/1712.04722.
  21. Alwin Zulehner and Robert Wille. Compiling SU(4) Quantum Circuits to IBM QX Architectures. arXiv.org, 2018. URL: http://arxiv.org/abs/1808.05661.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail