Delay-Robustness of Transfer Patterns in Public Transportation Route Planning

Authors Hannah Bast, Jonas Sternisko, Sabine Storandt

Thumbnail PDF


  • Filesize: 0.72 MB
  • 13 pages

Document Identifiers

Author Details

Hannah Bast
Jonas Sternisko
Sabine Storandt

Cite AsGet BibTex

Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-Robustness of Transfer Patterns in Public Transportation Route Planning. In 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 33, pp. 42-54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Transfer pattern routing is a state-of-the-art speed-up technique for finding optimal paths which minimize multiple cost criteria in public transportation networks. It precomputes sequences of transfer stations along optimal paths. At query time, the optimal paths are searched among the stored transfer patterns, which allows for very fast response times even on very large networks. On the other hand, even a minor change to the timetables may affect many optimal paths, so that, in principle, a new computation of all optimal transfer patterns becomes necessary. In this paper, we examine the robustness of transfer pattern routing towards delay, which is the most common source of such updates. The intuition is that the deviating paths caused by typical updates are already covered by original transfer patterns. We perform experiments which show that the transfer patterns are remarkably robust even to large and many delays, which underlines the applicability and reliability of transfer pattern routing in realistic routing applications.
  • Route planning
  • public transportation
  • transfer patterns
  • delay
  • robustness


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail