Large Semantic Graph Summarization Using Namespaces

Authors Ana Rita Santos Lopes da Costa , André Santos , José Paulo Leal

Thumbnail PDF


  • Filesize: 1.55 MB
  • 9 pages

Document Identifiers

Author Details

Ana Rita Santos Lopes da Costa
  • Department of Computer Science, Faculty of Science, University of Porto, Portugal
André Santos
  • CRACS & INESC Tec LA / Faculty of Sciences, University of Porto, Portugal
José Paulo Leal
  • CRACS & INESC Tec LA / Faculty of Sciences, University of Porto, Portugal

Cite AsGet BibTex

Ana Rita Santos Lopes da Costa, André Santos, and José Paulo Leal. Large Semantic Graph Summarization Using Namespaces. In 11th Symposium on Languages, Applications and Technologies (SLATE 2022). Open Access Series in Informatics (OASIcs), Volume 104, pp. 12:1-12:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


We propose an approach to summarize large semantics graphs using namespaces. Semantic graphs based on the Resource Description Framework (RDF) use namespaces on their serializations. Although these namespaces are not part of RDF semantics, they have intrinsic meaning. Based on this insight, we use namespaces to create summary graphs of reduced size, more amenable to be visualized. In the summarization, object literals are also reduced to their data type and the blank nodes to a group of their own. The visualization created for the summary graph aims to give insight of the original large graph. This paper describes the proposed approach and reports on the results obtained with representative large semantic graphs.

Subject Classification

ACM Subject Classification
  • Information systems → Summarization
  • Information systems → Resource Description Framework (RDF)
  • Semantic graph
  • RDF
  • namespaces
  • reification


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Dörthe Arndt, Jeen Broekstr, Bob DuCharme, Ora Lassila, Peter F. Patel-Schneider, Eric Prud'hommeaux, Jr. Ted Thibodeau, and Bryan Thompson. RDF-star and SPARQL-star. URL:
  2. Graphviz authors. Graphviz. URL:
  3. Mike Bergman and Frédérick Giasson. KBpedia. URL:
  4. Tim Berners-Lee. Reifying rdf (properly), and n3. URL:
  5. Angela Bonifati, Stefania Dumbrava, and Haridimos Kondylakis. Graph summarization. arXiv preprint arXiv:2004.14794, 2020. Google Scholar
  6. Redouane Bouhamoum, Kenza Kellou-Menouer, Stephane Lopes, and Zoubida Kedad. Scaling up schema discovery for rdf datasets. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages 84-89. IEEE, 2018. Google Scholar
  7. Šejla Čebirić, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana Manolescu, Georgia Troullinou, and Mussab Zneika. Summarizing semantic graphs: a survey. The VLDB journal, 28(3):295-327, 2019. Google Scholar
  8. Dinis Cruz. Dot language (graph based diagrams). URL:
  9. Richard Cyganiak. URL:
  10. Linked data. Linked movie database. URL:
  11. Christina Feilmayr and Wolfram Wöß. An analysis of ontologies and their success factors for application to business. Data & Knowledge Engineering, 101:1-23, 2016. Google Scholar
  12. Elshad Karimov. Trie Data Structure, pages 67-75. Apress, Berkeley, CA, 2020. URL:
  13. Kenza Kellou-Menouer and Zoubida Kedad. Schema discovery in rdf data sources. In International Conference on Conceptual Modeling, pages 481-495. Springer, 2015. Google Scholar
  14. Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods and applications: A survey. ACM computing surveys (CSUR), 51(3):1-34, 2018. Google Scholar
  15. Eric Prud'hommeaux and Andy Seaborne. SPARQL Query Language for RDF. URL:
  16. David Wood Richard Cyganiak and Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. URL:
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail