Isotonic Regression by Dynamic Programming

Author Günter Rote



PDF
Thumbnail PDF

File

OASIcs.SOSA.2019.1.pdf
  • Filesize: 0.86 MB
  • 18 pages

Document Identifiers

Author Details

Günter Rote

Cite As Get BibTex

Günter Rote. Isotonic Regression by Dynamic Programming. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019). Open Access Series in Informatics (OASIcs), Volume 69, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/OASIcs.SOSA.2019.1

Abstract

For a given sequence of numbers, we want to find a monotonically increasing sequence of the same length that best approximates it in the sense of minimizing the weighted sum of absolute values of the differences. A conceptually easy dynamic programming approach leads to an algorithm with running time O(n log n). While other algorithms with the same running time are known, our algorithm is very simple. The only auxiliary data structure that it requires is a priority queue. The approach extends to other error measures.

Subject Classification

Keywords
  • Convex functions
  • dynamic programming
  • convex hull
  • isotonic regression

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. K. Ahuja and J. B. Orlin. A fast scaling algorithm for minimizing separable convex functions subject to chain constraints. Operations Research, 49:784-789, 2001. URL: http://dx.doi.org/10.1287/opre.49.5.784.10601.
  2. R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference under Order Restrictions. Wiley, 1972. Google Scholar
  3. R. E. Barlow and H. D. Brunk. The Isotonic Regression Problem and its Dual. Journal of the American Statistical Association, 67(337):140-147, 1972. URL: http://dx.doi.org/10.1080/01621459.1972.10481216.
  4. Heather Booth and Robert Endre Tarjan. Finding the minimum-cost maximum flow in a series-parallel network. J. Algorithms, 15:416-446, 1993. URL: http://dx.doi.org/10.1006/jagm.1993.1048.
  5. M. R. Brown and R. E. Tarjan. A fast merging algorithm. J. Assoc. Comp. Mach., 26:211-226, 1979. URL: http://dx.doi.org/10.1145/322123.322127.
  6. P. M. Pardalos, G. L. Xue, and Y. Li. Efficient computation of an isotonic median regression. Applied Math. Letters, 8(2):67-70, March 1995. URL: http://dx.doi.org/10.1016/0893-9659(95)00013-G.
  7. Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction. Springer, 1985. Google Scholar
  8. Quentin F. Stout. Unimodal regression via prefix isotonic regression. Comp. Stat. and Data Anal., 53:289-297, 2008. URL: http://dx.doi.org/10.1016/j.csda.2008.08.005.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail