Towards WCET Analysis of Multicore Architectures Using UPPAAL

Authors Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, Paul Pettersson

Thumbnail PDF


  • Filesize: 488 kB
  • 12 pages

Document Identifiers

Author Details

Andreas Gustavsson
Andreas Ermedahl
Björn Lisper
Paul Pettersson

Cite AsGet BibTex

Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards WCET Analysis of Multicore Architectures Using UPPAAL. In 10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010). Open Access Series in Informatics (OASIcs), Volume 15, pp. 101-112, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


To take full advantage of the increasingly used shared-memory multicore architectures, software algorithms will need to be parallelized over multiple threads. This means that threads will have to share resources (e.g. some level of cache) and communicate and synchronize with each other. There already exist software libraries (e.g. OpenMP) used to explicitly parallelize available sequential C/C++ and Fortran code, which means that parallel code could be easily obtained. To be able to use parallel software running on multicore architectures in embedded systems with hard real-time constraints, new WCET (Worst-Case Execution Time) analysis methods and tools must be developed. This paper investigates a method based on model-checking a system of timed automata using the UPPAAL tool box. It is found that it is possible to perform WCET analysis on (small) parallel systems using UPPAAL. We also show how to model thread synchronization using spinlock-like primitives.
  • WCET
  • Multicore
  • Parallel
  • Thread Synchronization
  • Model-Checking


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail