Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors Bradley P. Allen , Filip Ilievski



PDF
Thumbnail PDF

File

TGDK.2.1.5.pdf
  • Filesize: 1.79 MB
  • 23 pages

Document Identifiers

Author Details

Bradley P. Allen
  • University of Amsterdam, The Netherlands
Filip Ilievski
  • Vrije Universiteit, Amsterdam, The Netherlands

Cite AsGet BibTex

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/TGDK.2.1.5

Abstract

Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Knowledge representation and reasoning
  • Software and its engineering → Software architectures
Keywords
  • knowledge engineering
  • knowledge graphs
  • quality attributes
  • software architectures
  • sociotechnical systems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. David Abián, Albert Meroño-Peñuela, and Elena Simperl. An analysis of content gaps versus user needs in the wikidata knowledge graph. In International Semantic Web Conference, pages 354-374. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-19433-7_21.
  2. Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan Ghazvininejad. A review on language models as knowledge bases. arXiv preprint arXiv:2204.06031, 2022. URL: https://doi.org/10.48550/arXiv.2204.06031.
  3. Bradley P. Allen, Filip Ilievski, and Saurav Joshi. Identifying and consolidating knowledge engineering requirements. arXiv preprint arXiv:2306.15124, 2023. URL: https://doi.org/10.48550/arXiv.2306.15124.
  4. Jürgen Angele, Dieter Fensel, Dieter Landes, and Rudi Studer. Developing knowledge-based systems with mike. domain modelling for interactive systems design, pages 9-38, 1998. Google Scholar
  5. Samuil Angelov, Paul Grefen, and Danny Greefhorst. A classification of software reference architectures: Analyzing their success and effectiveness. In 2009 Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on Software Architecture, pages 141-150. IEEE, 2009. URL: https://doi.org/10.1109/WICSA.2009.5290800.
  6. Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and Kishore Channabasavaiah. S3: A service-oriented reference architecture. IT professional, 9(3):10-17, 2007. URL: https://doi.org/10.1109/MITP.2007.53.
  7. Pouya Ataei and Alan Litchfield. The state of big data reference architectures: A systematic literature review. IEEE Access, 2022. URL: https://doi.org/10.1109/ACCESS.2022.3217557.
  8. Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. SEI Series in Software Engineering. Addison-Wesley Professional, fourth edition, 2022. Google Scholar
  9. Wouter Beek, Laurens Rietveld, Stefan Schlobach, and Frank van Harmelen. Lod laundromat: Why the semantic web needs centralization (even if we don't like it). IEEE Internet Computing, 20(2):78-81, 2016. URL: https://doi.org/10.1109/MIC.2016.43.
  10. Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT '21, pages 610-623, New York, NY, USA, 2021. Association for Computing Machinery. URL: https://doi.org/10.1145/3442188.3445922.
  11. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific american, 284(5):34-43, 2001. Google Scholar
  12. Juergen Boldt. The common object request broker: Architecture and specification. Specification formal/97-02-25, Object Management Group, jul 1995. URL: http://www.omg.org/cgi-bin/doc?formal/97-02-25.
  13. Matt Bornstein, Jennifer Li, and Casado. Martin. Emerging architectures for modern data infrastructure, 2020. URL: https://future.com/emerging-architectures-modern-data-infrastructure/.
  14. Anna Breit, Laura Waltersdorfer, Fajar J Ekaputra, Marta Sabou, Andreas Ekelhart, Andreea Iana, Heiko Paulheim, Jan Portisch, Artem Revenko, Annette ten Teije, et al. Combining machine learning and semantic web: A systematic mapping study. ACM Computing Surveys, 2023. URL: https://doi.org/10.1145/3586163.
  15. Niladri Chatterjee, Neha Kaushik, Deepali Gupta, and Ramneek Bhatia. Ontology merging: A practical perspective. In Information and Communication Technology for Intelligent Systems (ICTIS 2017)-Volume 2 2, pages 136-145. Springer, 2018. Google Scholar
  16. Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and olap technology. ACM Sigmod record, 26(1):65-74, 1997. URL: https://doi.org/10.1145/248603.248616.
  17. Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and Kostas Stefanidis. An overview of end-to-end entity resolution for big data. ACM Computing Surveys (CSUR), 53(6):1-42, 2020. URL: https://doi.org/10.1145/3418896.
  18. Robert Cloutier, Gerrit Muller, Dinesh Verma, Roshanak Nilchiani, Eirik Hole, and Mary Bone. The concept of reference architectures. Systems Engineering, 13(1):14-27, 2010. URL: https://doi.org/10.1002/sys.20129.
  19. Xin Luna Dong and Divesh Srivastava. Schema alignment. In Big Data Integration, pages 31-61. Springer, 2015. Google Scholar
  20. Fajar Ekaputra, Marta Sabou, Estefanía Serral Asensio, Elmar Kiesling, and Stefan Biffl. Ontology-based data integration in multi-disciplinary engineering environments: A review. Open Journal of Information Systems, 4(1):1-26, 2017. URL: https://www.ronpub.com/ojis/OJIS_2017v4i1n01_Ekaputra.html.
  21. Fajar J Ekaputra, Majlinda Llugiqi, Marta Sabou, Andreas Ekelhart, Heiko Paulheim, Anna Breit, Artem Revenko, Laura Waltersdorfer, Kheir Eddine Farfar, and Sören Auer. Describing and organizing semantic web and machine learning systems in the swemls-kg. In European Semantic Web Conference, pages 372-389. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-33455-9_22.
  22. Julian Ereth. Dataops-towards a definition. LWDA, 2191:104-112, 2018. URL: https://ceur-ws.org/Vol-2191/paper13.pdf.
  23. Vadim Ermolayev, Sotiris Batsakis, Natalya Keberle, Olga Tatarintseva, and Grigoris Antoniou. Ontologies of time: Review and trends. International Journal of Computer Science & Applications, 11(3), 2014. URL: http://www.tmrfindia.org/ijcsa/v11i34.pdf.
  24. Edward A Feigenbaum. The art of artificial intelligence: Themes and case studies of knowledge engineering. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence, volume 2. Boston, 1977. URL: http://ijcai.org/Proceedings/77-2/Papers/092.pdf.
  25. Edward A. Feigenbaum. A personal view of expert systems: Looking back and looking ahead. Expert Systems with Applications, 5(3):193-201, 1992. Special Issue: The World Congress on Expert System. URL: https://doi.org/10.1016/0957-4174(92)90004-C.
  26. Mariano Fernández-López, Asuncion Gomez-Perez, and Natalia Juristo. Methontology: from ontological art towards ontological engineering. Engineering Workshop on Ontological Engineering (AAAI97), mar 1997. Google Scholar
  27. DRAFT NIST Big Data Interoperability Framework. Draft nist big data interoperability framework: Volume 6, reference architecture. NIST Special Publication, 1500:6, 2015. Google Scholar
  28. Aldo Gangemi and Valentina Presutti. Ontology design patterns. In Handbook on ontologies, pages 221-243. Springer, 2009. URL: https://doi.org/10.1007/978-3-540-92673-3_10.
  29. Lina Garcés, Silverio Martínez-Fernández, Lucas Oliveira, Pedro Valle, Claudia Ayala, Xavier Franch, and Elisa Yumi Nakagawa. Three decades of software reference architectures: A systematic mapping study. Journal of Systems and Software, 179:111004, 2021. URL: https://doi.org/10.1016/j.jss.2021.111004.
  30. John H Gennari, Mark A Musen, Ray W Fergerson, William E Grosso, Monica Crubézy, Henrik Eriksson, Natalya F Noy, and Samson W Tu. The evolution of protégé: an environment for knowledge-based systems development. International Journal of Human-computer studies, 58(1):89-123, 2003. URL: https://doi.org/10.1016/S1071-5819(02)00127-1.
  31. Randy Goebel, Sandra Zilles, Christoph Ringlstetter, Andreas Dengel, and Gunnar Aastrand Grimnes. What is the role of the semantic layer cake for guiding the use of knowledge representation and machine learning in the development of the semantic web? In AAAI Spring Symposium: Symbiotic Relationships between Semantic Web and Knowledge Engineering, pages 45-50, 2008. URL: http://www.aaai.org/Library/Symposia/Spring/2008/ss08-07-006.php.
  32. Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological Engineering: with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer Science & Business Media, 2006. Google Scholar
  33. Paul Groth, Elena Simperl, Marieke van Erp, and Denny Vrandečić. Knowledge graphs and their role in the knowledge engineering of the 21st century (dagstuhl seminar 22372). Dagstuhl Reports, 12(9), 2023. URL: https://doi.org/10.4230/DagRep.12.9.60.
  34. Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-trained large language models to construct and utilize world models for model-based task planning. Advances in Neural Information Processing Systems, 36:79081-79094, 2023. URL: http://papers.nips.cc/paper_files/paper/2023/hash/f9f54762cbb4fe4dbffdd4f792c31221-Abstract-Conference.html.
  35. Anaïs Guillem, Antoine Gros, Kévin Réby, Violette Abergel, and Livio De Luca. Rcc8 for cidoc crm: semantic modeling of mereological and topological spatial relations in notre-dame de paris. In SWODCH’23: International Workshop on Semantic Web and Ontology Design for Cultural Heritage, 2023. URL: https://ceur-ws.org/Vol-3540/paper2.pdf.
  36. Olaf Hartig. Reflections on Linked Data Querying and other Related Topics. https://olafhartig.de/slides/Slides-DKG-SWSA-Talk.pdf, 2022. Accessed: 2022-03-17.
  37. Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing sparql queries over the web of linked data. In The Semantic Web-ISWC 2009: 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings 8, pages 293-309. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04930-9_19.
  38. Frederick Hayes-Roth, Donald A Waterman, and Douglas B Lenat. Building expert systems. Addison-Wesley Longman Publishing Co., Inc., 1983. Google Scholar
  39. James A Hendler. Tonight’s dessert: Semantic web layer cakes. In European Semantic Web Conference, pages 1-1. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02121-3_1.
  40. Aidan Hogan. The semantic web: Two decades on. Semantic Web, 11(1):169-185, 2020. URL: https://doi.org/10.3233/SW-190387.
  41. Carlos A Iglesias, Mercedes Garijo, José C González, and Juan R Velasco. Analysis and design of multiagent systems using mas-commonkads. In Intelligent Agents IV Agent Theories, Architectures, and Languages: 4th International Workshop, ATAL'97 Providence, Rhode Island, USA, July 24-26, 1997 Proceedings 4, pages 313-327. Springer, 1998. URL: https://doi.org/10.1007/BFb0026768.
  42. Ana Iglesias-Molina, Kian Ahrabian, Filip Ilievski, Jay Pujara, and Oscar Corcho. Comparison of knowledge graph representations for user consumption scenarios. In International Semantic Web Conference (ISWC) Research Track, 2023. URL: https://doi.org/10.1007/978-3-031-47240-4_15.
  43. Filip Ilievski, Daniel Garijo, Hans Chalupsky, Naren Teja Divvala, Yixiang Yao, Craig Rogers, Rongpeng Li, Jun Liu, Amandeep Singh, Daniel Schwabe, and Pedro Szekely. Kgtk: a toolkit for large knowledge graph manipulation and analysis. In International Semantic Web Conference, pages 278-293. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-62466-8_18.
  44. Filip Ilievski, Pedro Szekely, and Bin Zhang. Cskg: The commonsense knowledge graph. In Extended Semantic Web Conference (ESWC), 2021. URL: https://doi.org/10.1007/978-3-030-77385-4_41.
  45. Prateek Jain, Pascal Hitzler, Amit P Sheth, Kunal Verma, and Peter Z Yeh. Ontology alignment for linked open data. In International semantic web conference, pages 402-417. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-17746-0_26.
  46. Henry Kautz. The third ai summer: Aaai robert s. engelmore memorial lecture. AI Magazine, 43(1):93-104, 2022. URL: https://doi.org/10.1609/aimag.v43i1.19122.
  47. Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for architecture evaluation. Carnegie Mellon University, Software Engineering Institute Pittsburgh, PA, 2000. Google Scholar
  48. Elisa F Kendall and Deborah L McGuinness. Ontology engineering. Morgan & Claypool Publishers, 2019. URL: https://doi.org/10.2200/S00834ED1V01Y201802WBE018.
  49. Vijay Khatri and Carol V Brown. Designing data governance. Communications of the ACM, 53(1):148-152, 2010. URL: https://doi.org/10.1145/1629175.1629210.
  50. Gongjin Lan, Ting Liu, Xu Wang, Xueli Pan, and Zhisheng Huang. A semantic web technology index. Scientific reports, 12(1):3672, 2022. Google Scholar
  51. Doug Lenat and Gary Marcus. Getting from generative ai to trustworthy ai: What llms might learn from cyc. arXiv preprint arXiv:2308.04445, 2023. URL: https://doi.org/10.48550/arXiv.2308.04445.
  52. Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex Peysakhovich. Pytorch-biggraph: A large scale graph embedding system. Proceedings of Machine Learning and Systems, 1:120-131, 2019. URL: https://proceedings.mlsys.org/book/282.pdf.
  53. Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou. Trustworthy ai: From principles to practices. ACM Computing Surveys, 55(9):1-46, 2023. URL: https://doi.org/10.1145/3555803.
  54. Sebastian Lobentanzer, Patrick Aloy, Jan Baumbach, Balazs Bohar, Vincent J Carey, Pornpimol Charoentong, Katharina Danhauser, Tunca Doğan, Johann Dreo, Ian Dunham, et al. Democratizing knowledge representation with biocypher. Nature Biotechnology, pages 1-4, 2023. Google Scholar
  55. Sebastian Lobentanzer, Patrick Aloy, Jan Baumbach, Balazs Bohar, Vincent J Carey, Pornpimol Charoentong, Katharina Danhauser, Tunca Doğan, Johann Dreo, Ian Dunham, et al. Democratizing knowledge representation with biocypher. Nature Biotechnology, 41(8):1056-1059, 2023. Google Scholar
  56. Elisa Y Nakagawa, Fabiano C Ferrari, Mariela MF Sasaki, and José C Maldonado. An aspect-oriented reference architecture for software engineering environments. Journal of Systems and Software, 84(10):1670-1684, 2011. URL: https://doi.org/10.1016/j.jss.2011.04.052.
  57. Allen Newell, John Calman Shaw, and Herbert A Simon. Elements of a theory of human problem solving. Psychological review, 65(3):151, 1958. Google Scholar
  58. Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101: A guide to creating your first ontology, 2001. Google Scholar
  59. Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and Jamie Taylor. Industry-scale knowledge graphs: Lessons and challenges: Five diverse technology companies show how it’s done. Queue, 17(2):48-75, 2019. URL: https://doi.org/10.1145/3329781.3332266.
  60. Marc Gallofré Ocaña, Tareq Al-Moslmi, and A. Opdahl. Data privacy in journalistic knowledge platforms. In International Conference on Information and Knowledge Management, 2020. URL: https://ceur-ws.org/Vol-2699/paper44.pdf.
  61. Marc Gallofré Ocaña and Andreas L Opdahl. A software reference architecture for journalistic knowledge platforms. Knowledge-Based Systems, 276:110750, 2023. URL: https://doi.org/10.1016/j.knosys.2023.110750.
  62. Lorena Otero-Cerdeira, Francisco J Rodríguez-Martínez, and Alma Gómez-Rodríguez. Ontology matching: A literature review. Expert Systems with Applications, 42(2):949-971, 2015. URL: https://doi.org/10.1016/j.eswa.2014.08.032.
  63. Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic web, 8(3):489-508, 2017. URL: https://doi.org/10.3233/SW-160218.
  64. Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. Language models as knowledge bases? In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463-2473, Hong Kong, China, nov 2019. Association for Computational Linguistics. URL: https://doi.org/10.18653/v1/D19-1250.
  65. Alessandro Piscopo and Elena Simperl. Who models the world? collaborative ontology creation and user roles in wikidata. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW):1-18, 2018. URL: https://doi.org/10.1145/3274410.
  66. María Poveda-Villalón, Alba Fernández-Izquierdo, Mariano Fernández-López, and Raúl García-Castro. Lot: An industrial oriented ontology engineering framework. Engineering Applications of Artificial Intelligence, 111:104755, 2022. URL: https://doi.org/10.1016/j.engappai.2022.104755.
  67. Alun Preece. Evaluating verification and validation methods in knowledge engineering. In Industrial knowledge management: A micro-level approach, pages 91-104. Springer, 2001. Google Scholar
  68. Jason Priem, Heather Piwowar, and Richard Orr. Openalex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. arXiv preprint arXiv:2205.01833, 2022. URL: https://doi.org/10.48550/arXiv.2205.01833.
  69. Qinjun Qiu, Zhong Xie, Liang Wu, and Liufeng Tao. Dictionary-based automated information extraction from geological documents using a deep learning algorithm. Earth and Space Science, 7(3):e2019EA000993, 2020. Google Scholar
  70. F.P. Ramsey. Knowledge. In F.P. Ramsey: Philosophical Papers, pages 110-111. Cambridge University Press, 1929. Google Scholar
  71. Franck Ravat and Yan Zhao. Data lakes: Trends and perspectives. In Database and Expert Systems Applications: 30th International Conference, DEXA 2019, Linz, Austria, August 26-29, 2019, Proceedings, Part I 30, pages 304-313. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-27615-7_23.
  72. Marta Sabou, Majlinda Llugiqi, Fajar J Ekaputra, Laura Waltersdorfer, and Stefani Tsaneva. Knowledge engineering in the age of neurosymbolic systems. Neurosymbolic AI Journal (under review), 2024. Google Scholar
  73. Mahdi Sahlabadi, Ravie Chandren Muniyandi, Zarina Shukur, and Faizan Qamar. Lightweight software architecture evaluation for industry: A comprehensive review. Sensors, 22(3):1252, 2022. URL: https://doi.org/10.3390/s22031252.
  74. Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and Joshua Zhexue Huang. Big data analytics on apache spark. International Journal of Data Science and Analytics, 1:145-164, 2016. URL: https://doi.org/10.1007/s41060-016-0027-9.
  75. Michael Schade. How ChatGPT and Our Language Models Are Developed, 2023. URL: https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-language-models-are-developed.
  76. Phillip Schneider, Tim Schopf, Juraj Vladika, Mikhail Galkin, Elena Paslaru Bontas Simperl, and Florian Matthes. A decade of knowledge graphs in natural language processing: A survey. In AACL, 2022. URL: https://api.semanticscholar.org/CorpusID:252683270.
  77. August Th Schreiber, Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Nigel Shadbolt, Robert de Hoog, Walter Van de Velde, and Bob Wielinga. Knowledge engineering and management: the CommonKADS methodology. MIT press, 2000. Google Scholar
  78. Kartik Shenoy, Filip Ilievski, Daniel Garijo, Daniel Schwabe, and Pedro Szekely. A study of the quality of wikidata. Journal of Web Semantics, 2021. URL: https://doi.org/10.1016/j.websem.2021.100679.
  79. Umutcan Simsek, Elias Kärle, Kevin Angele, Elwin Huaman, Juliette Opdenplatz, Dennis Sommer, Jürgen Umbrich, and Dieter Fensel. A knowledge graph perspective on knowledge engineering. SN Computer Science, 4(1):16, 2022. URL: https://doi.org/10.1007/s42979-022-01429-x.
  80. Dezhao Song, Frank Schilder, Shai Hertz, Giuseppe Saltini, Charese Smiley, Phani Nivarthi, Oren Hazai, Dudi Landau, Mike Zaharkin, Tom Zielund, et al. Building and querying an enterprise knowledge graph. IEEE Transactions on Services Computing, 12(3):356-369, 2017. URL: https://doi.org/10.1109/TSC.2017.2711600.
  81. Miroslaw Staron and Miroslaw Staron. Autosar (automotive open system architecture). Automotive Software Architectures: An Introduction, pages 97-136, 2021. Google Scholar
  82. Monika Steidl, Michael Felderer, and Rudolf Ramler. The pipeline for the continuous development of artificial intelligence models—current state of research and practice. Journal of Systems and Software, 199:111615, 2023. URL: https://doi.org/10.1016/j.jss.2023.111615.
  83. Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano Fernández-López. The neon methodology for ontology engineering. In Ontology engineering in a networked world, pages 9-34. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-24794-1_2.
  84. Gytė Tamašauskaitė and Paul Groth. Defining a knowledge graph development process through a systematic review. ACM Transactions on Software Engineering and Methodology, 2022. URL: https://doi.org/10.1145/3522586.
  85. Richard N Taylor, Nenad Medvidović, and Eric M Dashofy. Software architecture: foundations, theory, and practice. John Wiley & Sons, Inc., 2010. Google Scholar
  86. WDQS Search Team. WDQS Backend Alternatives: The Process, Details and Results. https://www.wikidata.org/wiki/File:WDQS_Backend_Alternatives_working_paper.pdf, 2022. Accessed: 2022-08-15.
  87. Karim Tharani. Much more than a mere technology: A systematic review of wikidata in libraries. The Journal of Academic Librarianship, 47(2):102326, 2021. Google Scholar
  88. Katherine Thornton, Harold Solbrig, Gregory S Stupp, Jose Emilio Labra Gayo, Daniel Mietchen, Eric Prud’Hommeaux, and Andra Waagmeester. Using shape expressions (shex) to share rdf data models and to guide curation with rigorous validation. In The Semantic Web: 16th International Conference, ESWC 2019, Portorož, Slovenia, June 2-6, 2019, Proceedings 16, pages 606-620. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-21348-0_39.
  89. Ilaria Tiddi, Victor De Boer, Stefan Schlobach, and André Meyer-Vitali. Knowledge engineering for hybrid intelligence. In Proceedings of the 12th Knowledge Capture Conference 2023, pages 75-82, 2023. URL: https://doi.org/10.1145/3587259.3627541.
  90. Riccardo Tommasini, Filip Ilievski, and Thilini Wijesiriwardene. The internet meme knowledge graph. In ESWC, 2023. URL: https://doi.org/10.1007/978-3-031-33455-9_21.
  91. Michael van Bekkum, Maaike de Boer, Frank van Harmelen, André Meyer-Vitali, and Annette ten Teije. Modular design patterns for hybrid learning and reasoning systems: a taxonomy, patterns and use cases. Applied Intelligence, 51(9):6528-6546, 2021. URL: https://doi.org/10.1007/s10489-021-02394-3.
  92. Frank Van Harmelen and Annette Ten Teije. A boxology of design patterns for hybrid learning and reasoning systems. Journal of Web Engineering, 18(1-3):97-123, 2019. URL: https://doi.org/10.13052/jwe1540-9589.18133.
  93. Laura Waltersdorfer, Anna Breit, Fajar J Ekaputra, Marta Sabou, Andreas Ekelhart, Andreea Iana, Heiko Paulheim, Jan Portisch, Artem Revenko, Annette ten Teije, et al. Semantic web machine learning systems: An analysis of system patterns. In Compendium of Neurosymbolic Artificial Intelligence, pages 77-99. IOS Press, 2023. URL: https://doi.org/10.3233/FAIA230136.
  94. Bob J Wielinga, A Th Schreiber, and Jost A Breuker. Kads: A modelling approach to knowledge engineering. Knowledge acquisition, 4(1):5-53, 1992. Google Scholar
  95. Hans Friedrich Witschel, Charuta Pande, Andreas Martin, Emanuele Laurenzi, and Knut Hinkelmann. Visualization of patterns for hybrid learning and reasoning with human involvement. In New Trends in Business Information Systems and Technology: Digital Innovation and Digital Business Transformation, pages 193-204. Springer, 2020. Google Scholar
  96. Dong Yang, Lixin Tong, Yan Ye, and Hongwei Wu. Applying commonkads and semantic web technologies to ontology-based e-government knowledge systems. In The Semantic Web-ASWC 2006: First Asian Semantic Web Conference, Beijing, China, September 3-7, 2006. Proceedings 1, pages 336-342. Springer, 2006. URL: https://doi.org/10.1007/11836025_34.
  97. Yixiang Yao, Pedro Szekely, and Jay Pujara. Extensible and scalable entity resolution for financial datasets using rltk. In Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets, pages 1-1, 2019. URL: https://doi.org/10.1145/3336499.3338008.
  98. Nasser Zalmout, Chenwei Zhang, Xian Li, Yan Liang, and Xin Luna Dong. All you need to know to build a product knowledge graph. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 4090-4091, 2021. URL: https://doi.org/10.1145/3447548.3470825.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail