BibTeX Export for Dagstuhl Reports, Volume 10, Issue 4

Copy to Clipboard Download

@Article{DagRep.10.4,
  title =	{{DagRep, Volume 10, Issue 4, September 2020, Complete Issue}},
  pages =	{1--44},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2021},
  volume =	{10},
  number =	{4},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.10.4},
  URN =		{urn:nbn:de:0030-drops-137331},
  doi =		{10.4230/DagRep.10.4},
  annote =	{Keywords: DagRep, Volume 10, Issue 4, April 2020, Complete Issue}
}
@Article{DagRep.10.4.i,
  title =	{{Dagstuhl Reports, Table of Contents, Volume 10, Issue 4, 2020}},
  pages =	{i--ii},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2021},
  volume =	{10},
  number =	{4},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.10.4.i},
  URN =		{urn:nbn:de:0030-drops-137344},
  doi =		{10.4230/DagRep.10.4.i},
  annote =	{Keywords: Table of Contents, Frontmatter}
}
@Article{krempl_et_al:DagRep.10.4.1,
  author =	{Krempl, Georg and Hofer, Vera and Webb, Geoffrey and H\"{u}llermeier, Eyke},
  title =	{{Beyond Adaptation: Understanding Distributional Changes (Dagstuhl Seminar 20372)}},
  pages =	{1--36},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2021},
  volume =	{10},
  number =	{4},
  editor =	{Krempl, Georg and Hofer, Vera and Webb, Geoffrey and H\"{u}llermeier, Eyke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.10.4.1},
  URN =		{urn:nbn:de:0030-drops-137359},
  doi =		{10.4230/DagRep.10.4.1},
  annote =	{Keywords: Statistical Machine Learning, Data Streams, Concept Drift, Non-Stationary Non-IID Data, Change Mining, Dagstuhl Seminar}
}
@Article{oelke_et_al:DagRep.10.4.37,
  author =	{Oelke, Daniela and Keim, Daniel A. and Chau, Polo and Endert, Alex},
  title =	{{Interactive Visualization for Fostering Trust in AI (Dagstuhl Seminar 20382)}},
  pages =	{37--42},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2021},
  volume =	{10},
  number =	{4},
  editor =	{Oelke, Daniela and Keim, Daniel A. and Chau, Polo and Endert, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.10.4.37},
  URN =		{urn:nbn:de:0030-drops-137360},
  doi =		{10.4230/DagRep.10.4.37},
  annote =	{Keywords: accountability, artificial intelligence, explainability, fairness, interactive visualization, machine learning, responsibility, trust, understandability}
}

The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.

Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail