<h2>LIPIcs, Volume 156, FORC 2020</h2> <ul> <li> <span class="authors">Aaron Roth</span> <span class="title">LIPIcs, Volume 156, FORC 2020, Complete Volume</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020">10.4230/LIPIcs.FORC.2020</a> </li> <li> <span class="authors">Aaron Roth</span> <span class="title">Front Matter, Table of Contents, Preface, Conference Organization</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.0">10.4230/LIPIcs.FORC.2020.0</a> </li> <li> <span class="authors">Lee Cohen, Zachary C. Lipton, and Yishay Mansour</span> <span class="title">Efficient Candidate Screening Under Multiple Tests and Implications for Fairness</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.1">10.4230/LIPIcs.FORC.2020.1</a> </li> <li> <span class="authors">Christina Ilvento</span> <span class="title">Metric Learning for Individual Fairness</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.2">10.4230/LIPIcs.FORC.2020.2</a> </li> <li> <span class="authors">Avrim Blum and Kevin Stangl</span> <span class="title">Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.3">10.4230/LIPIcs.FORC.2020.3</a> </li> <li> <span class="authors">Moni Naor and Neil Vexler</span> <span class="title">Can Two Walk Together: Privacy Enhancing Methods and Preventing Tracking of Users</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.4">10.4230/LIPIcs.FORC.2020.4</a> </li> <li> <span class="authors">Christopher Jung, Sampath Kannan, and Neil Lutz</span> <span class="title">Service in Your Neighborhood: Fairness in Center Location</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.5">10.4230/LIPIcs.FORC.2020.5</a> </li> <li> <span class="authors">Ashesh Rambachan and Jonathan Roth</span> <span class="title">Bias In, Bias Out? Evaluating the Folk Wisdom</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.6">10.4230/LIPIcs.FORC.2020.6</a> </li> <li> <span class="authors">Cynthia Dwork, Christina Ilvento, and Meena Jagadeesan</span> <span class="title">Individual Fairness in Pipelines</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.7">10.4230/LIPIcs.FORC.2020.7</a> </li> <li> <span class="authors">Cynthia Dwork, Christina Ilvento, Guy N. Rothblum, and Pragya Sur</span> <span class="title">Abstracting Fairness: Oracles, Metrics, and Interpretability</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.8">10.4230/LIPIcs.FORC.2020.8</a> </li> <li> <span class="authors">Mark Braverman and Sumegha Garg</span> <span class="title">The Role of Randomness and Noise in Strategic Classification</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.9">10.4230/LIPIcs.FORC.2020.9</a> </li> <li> <span class="authors">Katrina Ligett, Charlotte Peale, and Omer Reingold</span> <span class="title">Bounded-Leakage Differential Privacy</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.FORC.2020.10">10.4230/LIPIcs.FORC.2020.10</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing