2 Search Results for "Costa, Diogo"


Document
Subtyping Context-Free Session Types

Authors: Gil Silva, Andreia Mordido, and Vasco T. Vasconcelos

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
Context-free session types describe structured patterns of communication on heterogeneously typed channels, allowing the specification of protocols unconstrained by tail recursion. The enhanced expressive power provided by non-regular recursion comes, however, at the cost of the decidability of subtyping, even if equivalence is still decidable. We present an approach to subtyping context-free session types based on a novel kind of observational preorder we call XYZW-simulation, which generalizes XY-simulation (also known as covariant-contravariant simulation) and therefore also bisimulation and plain simulation. We further propose a subtyping algorithm that we prove to be sound, and present an empirical evaluation in the context of a compiler for a programming language. Due to the general nature of the simulation relation upon which it is built, this algorithm may also find applications in other domains.

Cite as

Gil Silva, Andreia Mordido, and Vasco T. Vasconcelos. Subtyping Context-Free Session Types. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{silva_et_al:LIPIcs.CONCUR.2023.11,
  author =	{Silva, Gil and Mordido, Andreia and Vasconcelos, Vasco T.},
  title =	{{Subtyping Context-Free Session Types}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.11},
  URN =		{urn:nbn:de:0030-drops-190055},
  doi =		{10.4230/LIPIcs.CONCUR.2023.11},
  annote =	{Keywords: Session types, Subtyping, Simulation, Simple grammars, Non-regular recursion}
}
Document
IRQ Coloring: Mitigating Interrupt-Generated Interference on ARM Multicore Platforms

Authors: Diogo Costa, Luca Cuomo, Daniel Oliveira, Ida Maria Savino, Bruno Morelli, José Martins, Fabrizio Tronci, Alessandro Biasci, and Sandro Pinto

Published in: OASIcs, Volume 108, Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)


Abstract
Mixed-criticality systems, which consolidate workloads with different criticalities, must comply with stringent spatial and temporal isolation requirements imposed by safety-critical standards (e.g., ISO26262). This, per se, has proven to be a challenge with the advent of multicore platforms due to the inner interference created by multiple subsystems while disputing access to shared resources. With this work, we pioneer the concept of Interrupt (IRQ) coloring as a novel mechanism to minimize the interference created by co-existing interrupt-driven workloads. The main idea consists of selectively deactivating specific ("colored") interrupts if the QoS of critical workloads (e.g., Virtual Machines) drops below a well-defined threshold. The IRQ Coloring approach encompasses two artifacts, i.e., the IRQ Coloring Design-Time Tool (IRQ DTT) and the IRQ Coloring Run-Time Mechanism (IRQ RTM). In this paper, we focus on presenting the conceptual IRQ coloring design, describing the first prototype of the IRQ RTM on Bao hypervisor, and providing initial evidence about the effectiveness of the proposed approach on a synthetic use case.

Cite as

Diogo Costa, Luca Cuomo, Daniel Oliveira, Ida Maria Savino, Bruno Morelli, José Martins, Fabrizio Tronci, Alessandro Biasci, and Sandro Pinto. IRQ Coloring: Mitigating Interrupt-Generated Interference on ARM Multicore Platforms. In Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023). Open Access Series in Informatics (OASIcs), Volume 108, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{costa_et_al:OASIcs.NG-RES.2023.2,
  author =	{Costa, Diogo and Cuomo, Luca and Oliveira, Daniel and Savino, Ida Maria and Morelli, Bruno and Martins, Jos\'{e} and Tronci, Fabrizio and Biasci, Alessandro and Pinto, Sandro},
  title =	{{IRQ Coloring: Mitigating Interrupt-Generated Interference on ARM Multicore Platforms}},
  booktitle =	{Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)},
  pages =	{2:1--2:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-268-6},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{108},
  editor =	{Terraneo, Federico and Cattaneo, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.NG-RES.2023.2},
  URN =		{urn:nbn:de:0030-drops-177333},
  doi =		{10.4230/OASIcs.NG-RES.2023.2},
  annote =	{Keywords: IRQ coloring, Interrupt Interference, Mixed-Criticality Systems, Hypervisors, Bao, Arm}
}
  • Refine by Author
  • 1 Biasci, Alessandro
  • 1 Costa, Diogo
  • 1 Cuomo, Luca
  • 1 Martins, José
  • 1 Mordido, Andreia
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Embedded software
  • 1 Computer systems organization → Real-time system specification
  • 1 Software and its engineering → Concurrent programming structures
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Type structures

  • Refine by Keyword
  • 1 Arm
  • 1 Bao
  • 1 Hypervisors
  • 1 IRQ coloring
  • 1 Interrupt Interference
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail