2 Search Results for "Esposito, Stefano"


Document
Multithread Accelerators on FPGAs: A Dataflow-Based Approach

Authors: Francesco Ratto, Stefano Esposito, Carlo Sau, Luigi Raffo, and Francesca Palumbo

Published in: OASIcs, Volume 100, 13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022)


Abstract
Multithreading is a well-known technique for general-purpose systems to deliver a substantial performance gain, raising resource efficiency by exploiting underutilization periods. With the increase of specialized hardware, resource efficiency became fundamental to master the introduced overhead of such kind of devices. In this work, we propose a model-based approach for designing specialized multithread hardware accelerators. This novel approach exploits dataflow models of applications and tagged tokens to let the resulting hardware support concurrent threads without the need to replicate the whole accelerator. Assessment is carried out over different versions of an accelerator for a compute-intensive step of modern video coding algorithms, under several feeding configurations. Results highlight that the proposed multithread accelerators achieve a valuable tradeoff: saving computational resources with respect to replicated parallel single-thread accelerators, while guaranteeing shorter waiting, response, and elaboration time than a unique single-thread accelerator multiplexed in time.

Cite as

Francesco Ratto, Stefano Esposito, Carlo Sau, Luigi Raffo, and Francesca Palumbo. Multithread Accelerators on FPGAs: A Dataflow-Based Approach. In 13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022). Open Access Series in Informatics (OASIcs), Volume 100, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ratto_et_al:OASIcs.PARMA-DITAM.2022.6,
  author =	{Ratto, Francesco and Esposito, Stefano and Sau, Carlo and Raffo, Luigi and Palumbo, Francesca},
  title =	{{Multithread Accelerators on FPGAs: A Dataflow-Based Approach}},
  booktitle =	{13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022)},
  pages =	{6:1--6:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-231-0},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{100},
  editor =	{Palumbo, Francesca and Bispo, Jo\~{a}o and Cherubin, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2022.6},
  URN =		{urn:nbn:de:0030-drops-161225},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2022.6},
  annote =	{Keywords: multithreading, dataflow, hardware acceleration, heterogeneous systems, tagged dataflow}
}
Document
Invited Paper
HPC Application Cloudification: The StreamFlow Toolkit (Invited Paper)

Authors: Iacopo Colonnelli, Barbara Cantalupo, Roberto Esposito, Matteo Pennisi, Concetto Spampinato, and Marco Aldinucci

Published in: OASIcs, Volume 88, 12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and 10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2021)


Abstract
Finding an effective way to improve accessibility to High-Performance Computing facilities, still anchored to SSH-based remote shells and queue-based job submission mechanisms, is an open problem in computer science. This work advocates a cloudification of HPC applications through a cluster-as-accelerator pattern, where computationally demanding portions of the main execution flow hosted on a Cloud Finding an effective way to improve accessibility to High-Performance Computing facilities, still anchored to SSH-based remote shells and queue-based job submission mechanisms, is an open problem in computer science. This work advocates a cloudification of HPC applications through a cluster-as-accelerator pattern, where computationally demanding portions of the main execution flow hosted on a Cloud infrastructure can be offloaded to HPC environments to speed them up. We introduce StreamFlow, a novel Workflow Management System that supports such a design pattern and makes it possible to run the steps of a standard workflow model on independent processing elements with no shared storage. We validated the proposed approach’s effectiveness on the CLAIRE COVID-19 universal pipeline, i.e. a reproducible workflow capable of automating the comparison of (possibly all) state-of-the-art pipelines for the diagnosis of COVID-19 interstitial pneumonia from CT scans images based on Deep Neural Networks (DNNs).

Cite as

Iacopo Colonnelli, Barbara Cantalupo, Roberto Esposito, Matteo Pennisi, Concetto Spampinato, and Marco Aldinucci. HPC Application Cloudification: The StreamFlow Toolkit (Invited Paper). In 12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and 10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2021). Open Access Series in Informatics (OASIcs), Volume 88, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{colonnelli_et_al:OASIcs.PARMA-DITAM.2021.5,
  author =	{Colonnelli, Iacopo and Cantalupo, Barbara and Esposito, Roberto and Pennisi, Matteo and Spampinato, Concetto and Aldinucci, Marco},
  title =	{{HPC Application Cloudification: The StreamFlow Toolkit}},
  booktitle =	{12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and 10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2021)},
  pages =	{5:1--5:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-181-8},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{88},
  editor =	{Bispo, Jo\~{a}o and Cherubin, Stefano and Flich, Jos\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2021.5},
  URN =		{urn:nbn:de:0030-drops-136419},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2021.5},
  annote =	{Keywords: cloud computing, distributed computing, high-performance computing, streamflow, workflow management systems}
}
  • Refine by Author
  • 1 Aldinucci, Marco
  • 1 Cantalupo, Barbara
  • 1 Colonnelli, Iacopo
  • 1 Esposito, Roberto
  • 1 Esposito, Stefano
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Cloud computing
  • 1 Computer systems organization → Data flow architectures
  • 1 Computing methodologies → Concurrent algorithms
  • 1 Computing methodologies → Distributed computing methodologies
  • 1 Hardware → Best practices for EDA

  • Refine by Keyword
  • 1 cloud computing
  • 1 dataflow
  • 1 distributed computing
  • 1 hardware acceleration
  • 1 heterogeneous systems
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail