3 Search Results for "Barwell, Adam D."


Document
Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Authors: Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Session types provide a typing discipline for message-passing systems. However, most session type approaches assume an ideal world: one in which everything is reliable and without failures. Yet this is in stark contrast with distributed systems in the real world. To address this limitation, we introduce Teatrino, a code generation toolchain that utilises asynchronous multiparty session types (MPST) with crash-stop semantics to support failure handling protocols. We augment asynchronous MPST and processes with crash handling branches. Our approach requires no user-level syntax extensions for global types and features a formalisation of global semantics, which captures complex behaviours induced by crashed/crash handling processes. The sound and complete correspondence between global and local type semantics guarantees deadlock-freedom, protocol conformance, and liveness of typed processes in the presence of crashes. Our theory is implemented in the toolchain Teatrino, which provides correctness by construction. Teatrino extends the Scribble multiparty protocol language to generate protocol-conforming Scala code, using the Effpi concurrent programming library. We extend both Scribble and Effpi to support crash-stop behaviour. We demonstrate the feasibility of our methodology and evaluate Teatrino with examples extended from both session type and distributed systems literature.

Cite as

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing Asynchronous Multiparty Protocols with Crash-Stop Failures. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 1:1-1:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{barwell_et_al:LIPIcs.ECOOP.2023.1,
  author =	{Barwell, Adam D. and Hou, Ping and Yoshida, Nobuko and Zhou, Fangyi},
  title =	{{Designing Asynchronous Multiparty Protocols with Crash-Stop Failures}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{1:1--1:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.1},
  URN =		{urn:nbn:de:0030-drops-181944},
  doi =		{10.4230/LIPIcs.ECOOP.2023.1},
  annote =	{Keywords: Session Types, Concurrency, Failure Handling, Code Generation, Scala}
}
Document
Artifact
Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact)

Authors: Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou

Published in: DARTS, Volume 9, Issue 2, Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
We introduce Teatrino, a toolchain that supports handling multiparty protocols with crash-stop failures and crash-handling behaviours. Teatrino accompanies the novel MPST theory in the related article, and enables users to generate fault-tolerant protocol-conforming Scala code from Scribble protocols. Local types are projected from the global protocol, enabling correctness-by-construction, and are expressed directly as Scala types via the Effpi concurrency library. Teatrino extends both Scribble and Effpi with support for crash-stop behaviour. The generated Scala code is executable and can be further integrated with existing systems. The accompanying theory in the related article guarantees deadlock-freedom and liveness properties for failure handling protocols and their implementation. This artifact includes examples, extended from both session type and distributed systems literature, featured in the related article.

Cite as

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact). In Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023). Dagstuhl Artifacts Series (DARTS), Volume 9, Issue 2, pp. 9:1-9:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{barwell_et_al:DARTS.9.2.9,
  author =	{Barwell, Adam D. and Hou, Ping and Yoshida, Nobuko and Zhou, Fangyi},
  title =	{{Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact)}},
  pages =	{9:1--9:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2023},
  volume =	{9},
  number =	{2},
  editor =	{Barwell, Adam D. and Hou, Ping and Yoshida, Nobuko and Zhou, Fangyi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DARTS.9.2.9},
  URN =		{urn:nbn:de:0030-drops-182492},
  doi =		{10.4230/DARTS.9.2.9},
  annote =	{Keywords: Session Types, Concurrency, Failure Handling, Code Generation, Scala}
}
Document
Generalised Multiparty Session Types with Crash-Stop Failures

Authors: Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
Session types enable the specification and verification of communicating systems. However, their theory often assumes that processes never fail. To address this limitation, we present a generalised multiparty session type (MPST) theory with crash-stop failures, where processes can crash arbitrarily. Our new theory validates more protocols and processes w.r.t. previous work. We apply minimal syntactic changes to standard session π-calculus and types: we model crashes and their handling semantically, with a generalised MPST typing system parametric on a behavioural safety property. We cover the spectrum between fully reliable and fully unreliable sessions, via optional reliability assumptions, and prove type safety and protocol conformance in the presence of crash-stop failures. Introducing crash-stop failures has non-trivial consequences: writing correct processes that handle all crash scenarios can be difficult. Yet, our generalised MPST theory allows us to tame this complexity, via model checking, to validate whether a multiparty session satisfies desired behavioural properties, e.g. deadlock-freedom or liveness, even in presence of crashes. We implement our approach using the mCRL2 model checker, and evaluate it with examples extended from the literature.

Cite as

Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised Multiparty Session Types with Crash-Stop Failures. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 35:1-35:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{barwell_et_al:LIPIcs.CONCUR.2022.35,
  author =	{Barwell, Adam D. and Scalas, Alceste and Yoshida, Nobuko and Zhou, Fangyi},
  title =	{{Generalised Multiparty Session Types with Crash-Stop Failures}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{35:1--35:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.35},
  URN =		{urn:nbn:de:0030-drops-170982},
  doi =		{10.4230/LIPIcs.CONCUR.2022.35},
  annote =	{Keywords: Session Types, Concurrency, Failure Handling, Model Checking}
}
  • Refine by Author
  • 3 Barwell, Adam D.
  • 3 Yoshida, Nobuko
  • 3 Zhou, Fangyi
  • 2 Hou, Ping
  • 1 Scalas, Alceste

  • Refine by Classification
  • 3 Theory of computation → Distributed computing models
  • 3 Theory of computation → Process calculi
  • 2 Software and its engineering → Concurrent programming languages
  • 2 Software and its engineering → Source code generation
  • 1 Software and its engineering → Model checking

  • Refine by Keyword
  • 3 Concurrency
  • 3 Failure Handling
  • 3 Session Types
  • 2 Code Generation
  • 2 Scala
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2023
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail