2 Search Results for "Coy, Sam"


Document
Track A: Algorithms, Complexity and Games
Optimal (Degree+1)-Coloring in Congested Clique

Authors: Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We consider the distributed complexity of the (degree+1)-list coloring problem, in which each node u of degree d(u) is assigned a palette of d(u)+1 colors, and the goal is to find a proper coloring using these color palettes. The (degree+1)-list coloring problem is a natural generalization of the classical (Δ+1)-coloring and (Δ+1)-list coloring problems, both being benchmark problems extensively studied in distributed and parallel computing. In this paper we settle the complexity of the (degree+1)-list coloring problem in the Congested Clique model by showing that it can be solved deterministically in a constant number of rounds.

Cite as

Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra. Optimal (Degree+1)-Coloring in Congested Clique. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{coy_et_al:LIPIcs.ICALP.2023.46,
  author =	{Coy, Sam and Czumaj, Artur and Davies, Peter and Mishra, Gopinath},
  title =	{{Optimal (Degree+1)-Coloring in Congested Clique}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.46},
  URN =		{urn:nbn:de:0030-drops-180987},
  doi =		{10.4230/LIPIcs.ICALP.2023.46},
  annote =	{Keywords: Distributed computing, graph coloring, parallel computing}
}
Document
Near-Shortest Path Routing in Hybrid Communication Networks

Authors: Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, Philipp Schneider, and Martijn Struijs

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
Hybrid networks, i.e., networks that leverage different means of communication, become ever more widespread. To allow theoretical study of such networks, [Augustine et al., SODA'20] introduced the HYBRID model, which is based on the concept of synchronous message passing and uses two fundamentally different principles of communication: a local mode, which allows every node to exchange one message per round with each neighbor in a local communication graph; and a global mode where any pair of nodes can exchange messages, but only few such exchanges can take place per round. A sizable portion of the previous research for the HYBRID model revolves around basic communication primitives and computing distances or shortest paths in networks. In this paper, we extend this study to a related fundamental problem of computing compact routing schemes for near-shortest paths in the local communication graph. We demonstrate that, for the case where the local communication graph is a unit-disc graph with n nodes that is realized in the plane and has no radio holes, we can deterministically compute a routing scheme that has constant stretch and uses labels and local routing tables of size O(log n) bits in only O(log n) rounds.

Cite as

Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, Philipp Schneider, and Martijn Struijs. Near-Shortest Path Routing in Hybrid Communication Networks. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{coy_et_al:LIPIcs.OPODIS.2021.11,
  author =	{Coy, Sam and Czumaj, Artur and Feldmann, Michael and Hinnenthal, Kristian and Kuhn, Fabian and Scheideler, Christian and Schneider, Philipp and Struijs, Martijn},
  title =	{{Near-Shortest Path Routing in Hybrid Communication Networks}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.11},
  URN =		{urn:nbn:de:0030-drops-157863},
  doi =		{10.4230/LIPIcs.OPODIS.2021.11},
  annote =	{Keywords: Hybrid networks, overlay networks}
}
  • Refine by Author
  • 2 Coy, Sam
  • 2 Czumaj, Artur
  • 1 Davies, Peter
  • 1 Feldmann, Michael
  • 1 Hinnenthal, Kristian
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Distributed algorithms
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Massively parallel algorithms
  • 1 Theory of computation → Pseudorandomness and derandomization

  • Refine by Keyword
  • 1 Distributed computing
  • 1 Hybrid networks
  • 1 graph coloring
  • 1 overlay networks
  • 1 parallel computing

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail