4 Search Results for "Gäher, Lennard"


Document
Constructive and Synthetic Reducibility Degrees: Post’s Problem for Many-One and Truth-Table Reducibility in Coq

Authors: Yannick Forster and Felix Jahn

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
We present a constructive analysis and machine-checked theory of one-one, many-one, and truth-table reductions based on synthetic computability theory in the Calculus of Inductive Constructions, the type theory underlying the proof assistant Coq. We give elegant, synthetic, and machine-checked proofs of Post’s landmark results that a simple predicate exists, is enumerable, undecidable, but many-one incomplete (Post’s problem for many-one reducibility), and a hypersimple predicate exists, is enumerable, undecidable, but truth-table incomplete (Post’s problem for truth-table reducibility). In synthetic computability, one assumes axioms allowing to carry out computability theory with all definitions and proofs purely in terms of functions of the type theory with no mention of a model of computation. Proofs can focus on the essence of the argument, without having to sacrifice formality. Synthetic computability also clears the lense for constructivisation. Our constructively careful definition of simple and hypersimple predicates allows us to not assume classical axioms, not even Markov’s principle, still yielding the expected strong results.

Cite as

Yannick Forster and Felix Jahn. Constructive and Synthetic Reducibility Degrees: Post’s Problem for Many-One and Truth-Table Reducibility in Coq. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 21:1-21:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.CSL.2023.21,
  author =	{Forster, Yannick and Jahn, Felix},
  title =	{{Constructive and Synthetic Reducibility Degrees: Post’s Problem for Many-One and Truth-Table Reducibility in Coq}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{21:1--21:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.21},
  URN =		{urn:nbn:de:0030-drops-174820},
  doi =		{10.4230/LIPIcs.CSL.2023.21},
  annote =	{Keywords: type theory, computability theory, constructive mathematics, Coq}
}
Document
A Mechanised Proof of the Time Invariance Thesis for the Weak Call-By-Value λ-Calculus

Authors: Yannick Forster, Fabian Kunze, Gert Smolka, and Maximilian Wuttke

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
The weak call-by-value λ-calculus Łand Turing machines can simulate each other with a polynomial overhead in time. This time invariance thesis for L, where the number of β-reductions of a computation is taken as its time complexity, is the culmination of a 25-years line of research, combining work by Blelloch, Greiner, Dal Lago, Martini, Accattoli, Forster, Kunze, Roth, and Smolka. The present paper presents a mechanised proof of the time invariance thesis for L, constituting the first mechanised equivalence proof between two standard models of computation covering time complexity. The mechanisation builds on an existing framework for the extraction of Coq functions to L and contributes a novel Hoare logic framework for the verification of Turing machines. The mechanised proof of the time invariance thesis establishes Łas model for future developments of mechanised computational complexity theory regarding time. It can also be seen as a non-trivial but elementary case study of time-complexity-preserving translations between a functional language and a sequential machine model. As a by-product, we obtain a mechanised many-one equivalence proof of the halting problems for Łand Turing machines, which we contribute to the Coq Library of Undecidability Proofs.

Cite as

Yannick Forster, Fabian Kunze, Gert Smolka, and Maximilian Wuttke. A Mechanised Proof of the Time Invariance Thesis for the Weak Call-By-Value λ-Calculus. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.ITP.2021.19,
  author =	{Forster, Yannick and Kunze, Fabian and Smolka, Gert and Wuttke, Maximilian},
  title =	{{A Mechanised Proof of the Time Invariance Thesis for the Weak Call-By-Value \lambda-Calculus}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.19},
  URN =		{urn:nbn:de:0030-drops-139142},
  doi =		{10.4230/LIPIcs.ITP.2021.19},
  annote =	{Keywords: formalizations of computational models, computability theory, Coq, time complexity, Turing machines, lambda calculus, Hoare logic}
}
Document
Mechanising Complexity Theory: The Cook-Levin Theorem in Coq

Authors: Lennard Gäher and Fabian Kunze

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
We mechanise the Cook-Levin theorem, i.e. the NP-completeness of SAT, in the proof assistant Coq. We use the call-by-value λ-calculus L as the model of computation to formalise time complexity, the class NP, and polynomial-time reductions. The latter two notions agree with the usual characterisations via Turing machines (TMs), as L and TMs are polynomial-time equivalent. The use of L as the computational model, as opposed to TMs, significantly eases program verification and the derivation of resource bounds. However, for showing the NP-hardness of SAT, computations of L need to be encoded in SAT, which is complicated by L’s more complex computational structure. Thus, the polynomial-time reduction chain to SAT employs TMs as an intermediate problem, for which we neatly factor out a known textbook reduction from TMs to SAT. Still, all reduction functions are implemented and analysed in L. To the best of our knowledge, this is the first result in computational complexity theory that has been mechanised with respect to any concrete computational model. We discuss what makes this area of computer science hard to mechanise and highlight the design choices which enable our mechanisations.

Cite as

Lennard Gäher and Fabian Kunze. Mechanising Complexity Theory: The Cook-Levin Theorem in Coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gaher_et_al:LIPIcs.ITP.2021.20,
  author =	{G\"{a}her, Lennard and Kunze, Fabian},
  title =	{{Mechanising Complexity Theory: The Cook-Levin Theorem in Coq}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.20},
  URN =		{urn:nbn:de:0030-drops-139154},
  doi =		{10.4230/LIPIcs.ITP.2021.20},
  annote =	{Keywords: computational model, NP completeness, Coq, Cook, Levin}
}
Document
Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq

Authors: Dominik Kirst and Marc Hermes

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
We mechanise the undecidability of various first-order axiom systems in Coq, employing the synthetic approach to computability underlying the growing Coq Library of Undecidability Proofs. Concretely, we cover both semantic and deductive entailment in fragments of Peano arithmetic (PA) and Zermelo-Fraenkel set theory (ZF), with their undecidability established by many-one reductions from solvability of Diophantine equations, i.e. Hilbert’s tenth problem (H10), and the Post correspondence problem (PCP), respectively. In the synthetic setting based on the computability of all functions definable in a constructive foundation, such as Coq’s type theory, it suffices to define these reductions as meta-level functions with no need for further encoding in a formalised model of computation. The concrete cases of PA and ZF are prepared by a general synthetic theory of undecidable axiomatisations, focusing on well-known connections to consistency and incompleteness. Specifically, our reductions rely on the existence of standard models, necessitating additional assumptions in the case of full ZF, and all axiomatic extensions still justified by such standard models are shown incomplete. As a by-product of the undecidability of ZF formulated using only membership and no equality symbol, we obtain the undecidability of first-order logic with a single binary relation.

Cite as

Dominik Kirst and Marc Hermes. Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kirst_et_al:LIPIcs.ITP.2021.23,
  author =	{Kirst, Dominik and Hermes, Marc},
  title =	{{Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.23},
  URN =		{urn:nbn:de:0030-drops-139188},
  doi =		{10.4230/LIPIcs.ITP.2021.23},
  annote =	{Keywords: undecidability, synthetic computability, first-order logic, incompleteness, Peano arithmetic, ZF set theory, constructive type theory, Coq}
}
  • Refine by Author
  • 2 Forster, Yannick
  • 2 Kunze, Fabian
  • 1 Gäher, Lennard
  • 1 Hermes, Marc
  • 1 Jahn, Felix
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Constructive mathematics
  • 3 Theory of computation → Type theory
  • 2 Theory of computation → Logic and verification
  • 1 Theory of computation → Complexity classes
  • 1 Theory of computation → Computability
  • Show More...

  • Refine by Keyword
  • 4 Coq
  • 2 computability theory
  • 1 Cook
  • 1 Hoare logic
  • 1 Levin
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail