1 Search Results for "Inoue, Taichi"


Document
Computational Power of a Single Oblivious Mobile Agent in Two-Edge-Connected Graphs

Authors: Taichi Inoue, Naoki Kitamura, Taisuke Izumi, and Toshimitsu Masuzawa

Published in: LIPIcs, Volume 253, 26th International Conference on Principles of Distributed Systems (OPODIS 2022)


Abstract
We investigated the computational power of a single mobile agent in an n-node graph with storage (i.e., node memory). Generally, a system with one-bit agent memory and O(1)-bit storage is as powerful as that with O(n)-bit agent memory and O(1)-bit storage. Thus, we focus on the difference between one-bit memory and oblivious (i.e., zero-bit memory) agents. Although their computational powers are not equivalent, all the known results exhibiting such a difference rely on the fact that oblivious agents cannot transfer any information from one side to the other across the bridge edge. Hence, our main question is as follows: Are the computational powers of one-bit memory and oblivious agents equivalent in 2-edge-connected graphs or not? The main contribution of this study is to answer this question under the relaxed assumption that each node has O(logΔ)-bit storage (where Δ is the maximum degree of the graph). We present an algorithm for simulating any algorithm for a single one-bit memory agent using an oblivious agent with O(n²)-time overhead per round. Our results imply that the topological structure of graphs differentiating the computational powers of oblivious and non-oblivious agents is completely characterized by the existence of bridge edges.

Cite as

Taichi Inoue, Naoki Kitamura, Taisuke Izumi, and Toshimitsu Masuzawa. Computational Power of a Single Oblivious Mobile Agent in Two-Edge-Connected Graphs. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 253, pp. 11:1-11:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{inoue_et_al:LIPIcs.OPODIS.2022.11,
  author =	{Inoue, Taichi and Kitamura, Naoki and Izumi, Taisuke and Masuzawa, Toshimitsu},
  title =	{{Computational Power of a Single Oblivious Mobile Agent in Two-Edge-Connected Graphs}},
  booktitle =	{26th International Conference on Principles of Distributed Systems (OPODIS 2022)},
  pages =	{11:1--11:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-265-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{253},
  editor =	{Hillel, Eshcar and Palmieri, Roberto and Rivi\`{e}re, Etienne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2022.11},
  URN =		{urn:nbn:de:0030-drops-176311},
  doi =		{10.4230/LIPIcs.OPODIS.2022.11},
  annote =	{Keywords: mobile agent, depth-first search, space complexity}
}
  • Refine by Author
  • 1 Inoue, Taichi
  • 1 Izumi, Taisuke
  • 1 Kitamura, Naoki
  • 1 Masuzawa, Toshimitsu

  • Refine by Classification
  • 1 Theory of computation → Distributed algorithms

  • Refine by Keyword
  • 1 depth-first search
  • 1 mobile agent
  • 1 space complexity

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail