4 Search Results for "Lang, Christian"


Document
Algebraic Replicated Data Types: Programming Secure Local-First Software

Authors: Christian Kuessner, Ragnar Mogk, Anna-Katharina Wickert, and Mira Mezini

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
This paper is about programming support for local-first applications that manage private data locally, but still synchronize data between multiple devices. Typical use cases are synchronizing settings and data, and collaboration between multiple users. Such applications must preserve the privacy and integrity of the user’s data without impeding or interrupting the user’s normal workflow - even when the device is offline or has a flaky network connection. From the programming perspective, availability along with privacy and security concerns pose significant challenges, for which developers have to learn and use specialized solutions such as conflict-free replicated data types (CRDTs) or APIs for centralized data stores. This work relieves developers from this complexity by enabling the direct and automatic use of algebraic data types - which developers already use to express the business logic of the application - for synchronization and collaboration. Moreover, we use this approach to provide end-to-end encryption and authentication between multiple replicas (using a shared secret), that is suitable for a coordination-free setting. Overall, our approach combines all the following advantages: it (1) allows developers to design custom data types, (2) provides data privacy and integrity when using untrusted intermediaries, (3) is coordination free, (4) guarantees eventual consistency by construction (i.e., independent of developer errors), (5) does not cause indefinite growth of metadata, (6) has sufficiently efficient implementations for the local-first setting.

Cite as

Christian Kuessner, Ragnar Mogk, Anna-Katharina Wickert, and Mira Mezini. Algebraic Replicated Data Types: Programming Secure Local-First Software. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 14:1-14:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kuessner_et_al:LIPIcs.ECOOP.2023.14,
  author =	{Kuessner, Christian and Mogk, Ragnar and Wickert, Anna-Katharina and Mezini, Mira},
  title =	{{Algebraic Replicated Data Types: Programming Secure Local-First Software}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{14:1--14:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.14},
  URN =		{urn:nbn:de:0030-drops-182076},
  doi =		{10.4230/LIPIcs.ECOOP.2023.14},
  annote =	{Keywords: local-first, data privacy, coordination freedom, CRDTs, AEAD}
}
Document
Beyond the Threaded Programming Model on Real-Time Operating Systems

Authors: Erling Rennemo Jellum, Shaokai Lin, Peter Donovan, Efsane Soyer, Fuzail Shakir, Torleiv Bryne, Milica Orlandic, Marten Lohstroh, and Edward A. Lee

Published in: OASIcs, Volume 108, Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)


Abstract
The use of a real-time operating system (RTOS) raises the abstraction level for embedded systems design when compared to traditional bare-metal programming, resulting in simpler and more reusable application code. Modern RTOSes for resource-constrained platforms, like Zephyr and FreeRTOS, also offer threading support, but this kind of shared memory concurrency is a poor fit for expressing the reactive and interactive behaviors that are common in embedded systems. To address this, alternative concurrency models like the actor model or communicating sequential processes have been proposed. While those alternatives enable reactive design patterns, they fail to deliver determinism and do not address timing. This makes it difficult to verify that implemented behavior is as intended and impossible to specify timing constraints in a portable way. This makes it hard to create reusable library components out of common embedded design patterns, forcing developers to keep reinventing the wheel for each application and each platform. In this paper, we introduce the embedded target of Lingua Franca (LF) as a means to move beyond the threaded programming model provided by RTOSes and improve the state of the art in embedded programming. LF is based on the reactor model of computation, which is reactive, deterministic, and timed, providing a means to express concurrency and timing in a platform-independent way. We compare the performance of LF versus threaded C code - both running on Zephyr - in terms of response time, timing precision, throughput, and memory footprint.

Cite as

Erling Rennemo Jellum, Shaokai Lin, Peter Donovan, Efsane Soyer, Fuzail Shakir, Torleiv Bryne, Milica Orlandic, Marten Lohstroh, and Edward A. Lee. Beyond the Threaded Programming Model on Real-Time Operating Systems. In Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023). Open Access Series in Informatics (OASIcs), Volume 108, pp. 3:1-3:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jellum_et_al:OASIcs.NG-RES.2023.3,
  author =	{Jellum, Erling Rennemo and Lin, Shaokai and Donovan, Peter and Soyer, Efsane and Shakir, Fuzail and Bryne, Torleiv and Orlandic, Milica and Lohstroh, Marten and Lee, Edward A.},
  title =	{{Beyond the Threaded Programming Model on Real-Time Operating Systems}},
  booktitle =	{Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)},
  pages =	{3:1--3:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-268-6},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{108},
  editor =	{Terraneo, Federico and Cattaneo, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.NG-RES.2023.3},
  URN =		{urn:nbn:de:0030-drops-177348},
  doi =		{10.4230/OASIcs.NG-RES.2023.3},
  annote =	{Keywords: Real time, concurrency, reactors, Lingua Franca, RTOS}
}
Document
Towards Learning Terminological Concept Systems from Multilingual Natural Language Text

Authors: Lennart Wachowiak, Christian Lang, Barbara Heinisch, and Dagmar Gromann

Published in: OASIcs, Volume 93, 3rd Conference on Language, Data and Knowledge (LDK 2021)


Abstract
Terminological Concept Systems (TCS) provide a means of organizing, structuring and representing domain-specific multilingual information and are important to ensure terminological consistency in many tasks, such as translation and cross-border communication. While several approaches to (semi-)automatic term extraction exist, learning their interrelations is vastly underexplored. We propose an automated method to extract terms and relations across natural languages and specialized domains. To this end, we adapt pretrained multilingual neural language models, which we evaluate on term extraction standard datasets with best performing results and a combination of relation extraction standard datasets with competitive results. Code and dataset are publicly available.

Cite as

Lennart Wachowiak, Christian Lang, Barbara Heinisch, and Dagmar Gromann. Towards Learning Terminological Concept Systems from Multilingual Natural Language Text. In 3rd Conference on Language, Data and Knowledge (LDK 2021). Open Access Series in Informatics (OASIcs), Volume 93, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{wachowiak_et_al:OASIcs.LDK.2021.22,
  author =	{Wachowiak, Lennart and Lang, Christian and Heinisch, Barbara and Gromann, Dagmar},
  title =	{{Towards Learning Terminological Concept Systems from Multilingual Natural Language Text}},
  booktitle =	{3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages =	{22:1--22:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-199-3},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{93},
  editor =	{Gromann, Dagmar and S\'{e}rasset, Gilles and Declerck, Thierry and McCrae, John P. and Gracia, Jorge and Bosque-Gil, Julia and Bobillo, Fernando and Heinisch, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2021.22},
  URN =		{urn:nbn:de:0030-drops-145586},
  doi =		{10.4230/OASIcs.LDK.2021.22},
  annote =	{Keywords: Terminologies, Neural Language Models, Multilingual Information Extraction}
}
Document
Short Paper
Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper)

Authors: Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
Abstract data types are a helpful framework to formalise analyses and make them more transparent, reproducible and comprehensible. We are revisiting an approach based on the space, time and theme dimensions of remotely sensed data, and extending it with a more differentiated understanding of space-time representations. In contrast to existing approaches and implementations that consider only fixed spatial units (e.g. pixels), our approach allows investigations of the spatial units' spatio-temporal characteristics, such as the size and shape of their geometry, and their relationships. Five different abstract data types are identified to describe geographical phenomenon, either directly or in combination: coverage, time series, trajectory, composition and evolution.

Cite as

Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi. Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 60:1-60:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sudmanns_et_al:LIPIcs.GISCIENCE.2018.60,
  author =	{Sudmanns, Martin and Lang, Stefan and Tiede, Dirk and Werner, Christian and Augustin, Hannah and Baraldi, Andrea},
  title =	{{Abstract Data Types for Spatio-Temporal Remote Sensing Analysis}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{60:1--60:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.60},
  URN =		{urn:nbn:de:0030-drops-93881},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.60},
  annote =	{Keywords: Big Earth Data, Semantic Analysis, Data Cube}
}
  • Refine by Author
  • 1 Augustin, Hannah
  • 1 Baraldi, Andrea
  • 1 Bryne, Torleiv
  • 1 Donovan, Peter
  • 1 Gromann, Dagmar
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Dependable and fault-tolerant systems and networks
  • 1 Computer systems organization → Embedded software
  • 1 Computing methodologies → Information extraction
  • 1 Computing methodologies → Language resources
  • 1 Computing methodologies → Neural networks
  • Show More...

  • Refine by Keyword
  • 1 AEAD
  • 1 Big Earth Data
  • 1 CRDTs
  • 1 Data Cube
  • 1 Lingua Franca
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2023
  • 1 2018
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail