1 Search Results for "Pereszlényi, Attila"


Document
Pointer Quantum PCPs and Multi-Prover Games

Authors: Alex B. Grilo, Iordanis Kerenidis, and Attila Pereszlényi

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
The quantum PCP (QPCP) conjecture states that all problems in QMA, the quantum analogue of NP, admit quantum verifiers that only act on a constant number of qubits of a polynomial size quantum proof and have a constant gap between completeness and soundness. Despite an impressive body of work trying to prove or disprove the quantum PCP conjecture, it still remains widely open. The above-mentioned proof verification statement has also been shown equivalent to the QMA-completeness of the Local Hamiltonian problem with constant relative gap. Nevertheless, unlike in the classical case, no equivalent formulation in the language of multi-prover games is known. In this work, we propose a new type of quantum proof systems, the Pointer QPCP, where a verifier first accesses a classical proof that he can use as a pointer to which qubits from the quantum part of the proof to access. We define the Pointer QPCP conjecture, that states that all problems in QMA admit quantum verifiers that first access a logarithmic number of bits from the classical part of a polynomial size proof, then act on a constant number of qubits from the quantum part of the proof, and have a constant gap between completeness and soundness. We define a new QMA-complete problem, the Set Local Hamiltonian problem, and a new restricted class of quantum multi-prover games, called CRESP games. We use them to provide two other equivalent statements to the Pointer QPCP conjecture: the Set Local Hamiltonian problem with constant relative gap is QMA-complete; and the approximation of the maximum acceptance probability of CRESP games up to a constant additive factor is as hard as QMA. Our new conjecture is weaker than the original QPCP conjecture and hence provides a natural intermediate step towards proving the quantum PCP theorem. Furthermore, this is the first equivalence between a quantum PCP statement and the inapproximability of quantum multi-prover games.

Cite as

Alex B. Grilo, Iordanis Kerenidis, and Attila Pereszlényi. Pointer Quantum PCPs and Multi-Prover Games. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{grilo_et_al:LIPIcs.MFCS.2016.21,
  author =	{Grilo, Alex B. and Kerenidis, Iordanis and Pereszl\'{e}nyi, Attila},
  title =	{{Pointer Quantum PCPs and Multi-Prover Games}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{21:1--21:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.21},
  URN =		{urn:nbn:de:0030-drops-64364},
  doi =		{10.4230/LIPIcs.MFCS.2016.21},
  annote =	{Keywords: computational complexity, quantum computation, PCP theorem}
}
  • Refine by Author
  • 1 Grilo, Alex B.
  • 1 Kerenidis, Iordanis
  • 1 Pereszlényi, Attila

  • Refine by Classification

  • Refine by Keyword
  • 1 PCP theorem
  • 1 computational complexity
  • 1 quantum computation

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail