License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2020.83
URN: urn:nbn:de:0030-drops-117686
Go to the corresponding LIPIcs Volume Portal

Alman, Josh ; Vassilevska Williams, Virginia

OV Graphs Are (Probably) Hard Instances

LIPIcs-ITCS-2020-83.pdf (0.5 MB)


A graph G on n nodes is an Orthogonal Vectors (OV) graph of dimension d if there are vectors v_1, …, v_n ∈ {0,1}^d such that nodes i and j are adjacent in G if and only if ⟨v_i,v_j⟩ = 0 over Z. In this paper, we study a number of basic graph algorithm problems, except where one is given as input the vectors defining an OV graph instead of a general graph. We show that for each of the following problems, an algorithm solving it faster on such OV graphs G of dimension only d=O(log n) than in the general case would refute a plausible conjecture about the time required to solve sparse MAX-k-SAT instances:
- Determining whether G contains a triangle.
- More generally, determining whether G contains a directed k-cycle for any k ≥ 3.
- Computing the square of the adjacency matrix of G over ℤ or 𝔽_2.
- Maintaining the shortest distance between two fixed nodes of G, or whether G has a perfect matching, when G is a dynamically updating OV graph.
We also prove some complementary results about OV graphs. We show that any problem which is NP-hard on constant-degree graphs is also NP-hard on OV graphs of dimension O(log n), and we give two problems which can be solved faster on OV graphs than in general: Maximum Clique, and Online Matrix-Vector Multiplication.

BibTeX - Entry

  author =	{Josh Alman and Virginia Vassilevska Williams},
  title =	{{OV Graphs Are (Probably) Hard Instances}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{83:1--83:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Thomas Vidick},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-117686},
  doi =		{10.4230/LIPIcs.ITCS.2020.83},
  annote =	{Keywords: Orthogonal Vectors, Fine-Grained Reductions, Cycle Finding}

Keywords: Orthogonal Vectors, Fine-Grained Reductions, Cycle Finding
Collection: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
Issue Date: 2020
Date of publication: 06.01.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI