License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2020.86
URN: urn:nbn:de:0030-drops-117714
URL: https://drops.dagstuhl.de/opus/volltexte/2020/11771/
Go to the corresponding LIPIcs Volume Portal


Ball, Marshall ; Holmgren, Justin ; Ishai, Yuval ; Liu, Tianren ; Malkin, Tal

On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?

pdf-format:
LIPIcs-ITCS-2020-86.pdf (0.6 MB)


Abstract

Garbling schemes, also known as decomposable randomized encodings (DRE), have found many applications in cryptography. However, despite a large body of work on constructing such schemes, very little is known about their limitations. We initiate a systematic study of the DRE complexity of Boolean functions, obtaining the following main results: - Near-quadratic lower bounds. We use a classical lower bound technique of Nečiporuk [Dokl. Akad. Nauk SSSR '66] to show an Ω(n²/log n) lower bound on the size of any DRE for many explicit Boolean functions. For some natural functions, we obtain a corresponding upper bound, thus settling their DRE complexity up to polylogarithmic factors. Prior to our work, no superlinear lower bounds were known, even for non-explicit functions. - Garbling-friendly PRFs. We show that any exponentially secure PRF has Ω(n²/log n) DRE size, and present a plausible candidate for a "garbling-optimal" PRF that nearly meets this bound. This candidate establishes a barrier for super-quadratic DRE lower bounds via natural proof techniques. In contrast, we show a candidate for a weak PRF with near-exponential security and linear DRE size. Our results establish several qualitative separations, including near-quadratic separations between computational and information-theoretic DRE size of Boolean functions, and between DRE size of weak vs. strong PRFs.

BibTeX - Entry

@InProceedings{ball_et_al:LIPIcs:2020:11771,
  author =	{Marshall Ball and Justin Holmgren and Yuval Ishai and Tianren Liu and Tal Malkin},
  title =	{{On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{86:1--86:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Thomas Vidick},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/11771},
  URN =		{urn:nbn:de:0030-drops-117714},
  doi =		{10.4230/LIPIcs.ITCS.2020.86},
  annote =	{Keywords: Randomized Encoding, Private Simultaneous Messages}
}

Keywords: Randomized Encoding, Private Simultaneous Messages
Seminar: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
Issue Date: 2020
Date of publication: 10.01.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI