License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITC.2020.6
URN: urn:nbn:de:0030-drops-121114
URL: https://drops.dagstuhl.de/opus/volltexte/2020/12111/
Go to the corresponding LIPIcs Volume Portal


Rasmussen, Peter Michael Reichstein ; Sahai, Amit

Expander Graphs Are Non-Malleable Codes

pdf-format:
LIPIcs-ITC-2020-6.pdf (0.4 MB)


Abstract

Any d-regular graph on n vertices with spectral expansion λ satisfying n = Ω(d³log(d)/λ) yields a O((λ^{3/2})/d)-non-malleable code for single-bit messages in the split-state model.

BibTeX - Entry

@InProceedings{rasmussen_et_al:LIPIcs:2020:12111,
  author =	{Peter Michael Reichstein Rasmussen and Amit Sahai},
  title =	{{Expander Graphs Are Non-Malleable Codes}},
  booktitle =	{1st Conference on Information-Theoretic Cryptography (ITC 2020)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-151-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{163},
  editor =	{Yael Tauman Kalai and Adam D. Smith and Daniel Wichs},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12111},
  URN =		{urn:nbn:de:0030-drops-121114},
  doi =		{10.4230/LIPIcs.ITC.2020.6},
  annote =	{Keywords: Non-Malleable Code, Expander Graph, Mixing Lemma}
}

Keywords: Non-Malleable Code, Expander Graph, Mixing Lemma
Collection: 1st Conference on Information-Theoretic Cryptography (ITC 2020)
Issue Date: 2020
Date of publication: 04.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI