@InProceedings{aukerman_et_al:LIPIcs.SoCG.2020.11,
author = {Aukerman, Andrew and Carri\`{e}re, Mathieu and Chen, Chao and Gardner, Kevin and Rabad\'{a}n, Ra\'{u}l and Vanguri, Rami},
title = {{Persistent Homology Based Characterization of the Breast Cancer Immune Microenvironment: A Feasibility Study}},
booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)},
pages = {11:1--11:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-143-6},
ISSN = {1868-8969},
year = {2020},
volume = {164},
editor = {Cabello, Sergio and Chen, Danny Z.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.11},
URN = {urn:nbn:de:0030-drops-121695},
doi = {10.4230/LIPIcs.SoCG.2020.11},
annote = {Keywords: Topological data analysis, persistence diagrams}
}