License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2020.10
URN: urn:nbn:de:0030-drops-125625
URL: https://drops.dagstuhl.de/opus/volltexte/2020/12562/
Go to the corresponding LIPIcs Volume Portal


Cheng, Kuan ; Hoza, William M.

Hitting Sets Give Two-Sided Derandomization of Small Space

pdf-format:
LIPIcs-CCC-2020-10.pdf (0.6 MB)


Abstract

A hitting set is a "one-sided" variant of a pseudorandom generator (PRG), naturally suited to derandomizing algorithms that have one-sided error. We study the problem of using a given hitting set to derandomize algorithms that have two-sided error, focusing on space-bounded algorithms. For our first result, we show that if there is a log-space hitting set for polynomial-width read-once branching programs (ROBPs), then not only does 𝐋 = 𝐑𝐋, but 𝐋 = 𝐁𝐏𝐋 as well. This answers a question raised by Hoza and Zuckerman [William M. Hoza and David Zuckerman, 2018]. Next, we consider constant-width ROBPs. We show that if there are log-space hitting sets for constant-width ROBPs, then given black-box access to a constant-width ROBP f, it is possible to deterministically estimate 𝔼[f] to within ± ε in space O(log(n/ε)). Unconditionally, we give a deterministic algorithm for this problem with space complexity O(log² n + log(1/ε)), slightly improving over previous work. Finally, we investigate the limits of this line of work. Perhaps the strongest reduction along these lines one could hope for would say that for every explicit hitting set, there is an explicit PRG with similar parameters. In the setting of constant-width ROBPs over a large alphabet, we prove that establishing such a strong reduction is at least as difficult as constructing a good PRG outright. Quantitatively, we prove that if the strong reduction holds, then for every constant α > 0, there is an explicit PRG for constant-width ROBPs with seed length O(log^{1 + α} n). Along the way, unconditionally, we construct an improved hitting set for ROBPs over a large alphabet.

BibTeX - Entry

@InProceedings{cheng_et_al:LIPIcs:2020:12562,
  author =	{Kuan Cheng and William M. Hoza},
  title =	{{Hitting Sets Give Two-Sided Derandomization of Small Space}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{10:1--10:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Shubhangi Saraf},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12562},
  URN =		{urn:nbn:de:0030-drops-125625},
  doi =		{10.4230/LIPIcs.CCC.2020.10},
  annote =	{Keywords: hitting sets, derandomization, read-once branching programs}
}

Keywords: hitting sets, derandomization, read-once branching programs
Collection: 35th Computational Complexity Conference (CCC 2020)
Issue Date: 2020
Date of publication: 17.07.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI