Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

Authors Enrico Bortoletto , Niels Lindner , Berenike Masing



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2022.3.pdf
  • Filesize: 0.96 MB
  • 19 pages

Document Identifiers

Author Details

Enrico Bortoletto
  • Zuse Institute Berlin, Germany
Niels Lindner
  • Zuse Institute Berlin, Germany
Berenike Masing
  • Zuse Institute Berlin, Germany

Cite AsGet BibTex

Enrico Bortoletto, Niels Lindner, and Berenike Masing. Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), Volume 106, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/OASIcs.ATMOS.2022.3

Abstract

Periodic timetabling is a central aspect of both the long-term organization and the day-to-day operations of a public transportation system. The Periodic Event Scheduling Problem (PESP), the combinatorial optimization problem that forms the mathematical basis of periodic timetabling, is an extremely hard problem, for which optimal solutions are hardly ever found in practice. The most prominent solving strategies today are based on mixed-integer programming, and there is a concurrent PESP solver employing a wide range of heuristics [Borndörfer et al., 2020]. We present tropical neighborhood search (tns), a novel PESP heuristic. The method is based on the relations between periodic timetabling and tropical geometry [Bortoletto et al., 2022]. We implement tns into the concurrent solver, and test it on instances of the benchmarking library PESPlib. The inclusion of tns turns out to be quite beneficial to the solver: tns is able to escape local optima for the modulo network simplex algorithm, and the overall share of improvement coming from tns is substantial compared to the other methods available in the solver. Finally, we provide better primal bounds for five PESPlib instances.

Subject Classification

ACM Subject Classification
  • Applied computing → Transportation
  • Mathematics of computing → Combinatorial optimization
  • Mathematics of computing → Network flows
  • Mathematics of computing → Solvers
  • Mathematics of computing → Integer programming
  • Computing methodologies → Concurrent algorithms
Keywords
  • Periodic Timetabling
  • Tropical Geometry
  • Neighborhood Search
  • Mixed-Integer Programming

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Experiments in mixed-integer linear programming. Mathematical Programming, 1(1):76-94, December 1971. URL: https://doi.org/10.1007/BF01584074.
  2. R. Borndörfer, H. Hoppmann, M. Karbstein, and N. Lindner. Separation of cycle inequalities in periodic timetabling. Discrete Optimization, 35:100552, February 2020. URL: https://doi.org/10.1016/j.disopt.2019.100552.
  3. R. Borndörfer, N. Lindner, and S. Roth. A concurrent approach to the periodic event scheduling problem. Journal of Rail Transport Planning & Management, 15:100175, September 2020. URL: https://doi.org/10.1016/j.jrtpm.2019.100175.
  4. E. Bortoletto, N. Lindner, and B. Masing. The tropical and zonotopal geometry of periodic timetables, 2022. URL: https://doi.org/10.48550/ARXIV.2204.13501.
  5. M. Goerigk. PESPlib - A benchmark library for periodic event scheduling, 2012. URL: http://num.math.uni-goettingen.de/%7Em.goerigk/pesplib/.
  6. M. Goerigk and C. Liebchen. An Improved Algorithm for the Periodic Timetabling Problem. In G. D'Angelo and T. Dollevoet, editors, 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 12:1-12:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2017.12.
  7. M. Goerigk, A. Schöbel, and F. Spühler. A Phase I Simplex Method for Finding Feasible Periodic Timetables. In M. Müller-Hannemann and F. Perea, editors, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021), volume 96 of Open Access Series in Informatics (OASIcs), pages 6:1-6:13, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2021.6.
  8. M. Goerigk and A. Schöbel. Improving the modulo simplex algorithm for large-scale periodic timetabling. Computers and Operations Research, 40(5):1363-1370, May 2013. URL: https://doi.org/10.1016/j.cor.2012.08.018.
  9. P. Großmann, S. Hölldobler, N. Manthey, K. Nachtigall, J. Opitz, and P. Steinke. Solving Periodic Event Scheduling Problems with SAT. In J. He, D. Wei, A. Moonis, and W. Xindong, editors, Advanced Research in Applied Artificial Intelligence, Lecture Notes in Computer Science, pages 166-175, Berlin, Heidelberg, 2012. Springer. URL: https://doi.org/10.1007/978-3-642-31087-4_18.
  10. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.gurobi.com.
  11. C. Helmberg, T. Hofmann, and D. Wenzel. Periodic event scheduling for automated production systems. INFORMS Journal on Computing, 34(2):1291-1304, 2022. URL: https://doi.org/10.1287/ijoc.2021.1101.
  12. M. Joswig. Essentials of tropical combinatorics, volume 219 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2021. Google Scholar
  13. M. Joswig and K. Kulas. Tropical and ordinary convexity combined. Advances in Geometry, 10(2):333-352, 2010. URL: https://doi.org/doi:10.1515/advgeom.2010.012.
  14. M. Joswig and G. Loho. Weighted digraphs and tropical cones. Linear Algebra and its Applications, 501:304-343, 2016. URL: https://doi.org/10.1016/j.laa.2016.02.027.
  15. C. Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technische Universität Berlin, 2006. Google Scholar
  16. C. Liebchen and R. H. Möhring. The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables — and Beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. D. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, Lecture Notes in Computer Science, pages 3-40, Berlin, Heidelberg, 2007. Springer. URL: https://doi.org/10.1007/978-3-540-74247-0_1.
  17. C. Liebchen and L. Peeters. Integral cycle bases for cyclic timetabling. Discrete Optimization, 6:98-109, February 2009. URL: https://doi.org/10.1016/j.disopt.2008.09.003.
  18. N. Lindner and C. Liebchen. New Perspectives on PESP: T-Partitions and Separators. In V. Cacchiani and A. Marchetti-Spaccamela, editors, 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019), volume 75 of OpenAccess Series in Informatics (OASIcs), pages 2:1-2:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISSN: 2190-6807. URL: https://doi.org/10.4230/OASIcs.ATMOS.2019.2.
  19. N. Lindner and C. Liebchen. Determining All Integer Vertices of the PESP Polytope by Flipping Arcs. In D. Huisman and C. D. Zaroliagis, editors, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020), volume 85 of OpenAccess Series in Informatics (OASIcs), pages 5:1-5:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2020.5.
  20. N. Lindner and J. Reisch. An analysis of the parameterized complexity of periodic timetabling. Journal of Scheduling, February 2022. URL: https://doi.org/10.1007/s10951-021-00719-1.
  21. N. Lindner and R. van Lieshout. Benders decomposition for the periodic event scheduling problem. Technical Report 21-29, ZIB, Takustr. 7, 14195 Berlin, 2021. Google Scholar
  22. G. P. Matos, L. M. Albino, R. L. Saldanha, and E. M. Morgado. Solving periodic timetabling problems with SAT and machine learning. Public Transport, August 2020. URL: https://doi.org/10.1007/s12469-020-00244-y.
  23. K. Nachtigall. Cutting Planes for a Polyhedron Associated with a Periodic Network. undefined, 1996. Google Scholar
  24. K. Nachtigall. Periodic network optimization and fixed interval timetables. Technical report, Deutsches Zentrum für Luft- und Raumfahrt e.V., 1999. LIDO-Berichts. URL: https://elib.dlr.de/3657/.
  25. K. Nachtigall and J. Opitz. Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations. In M. Fischetti and P. Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08), volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISSN: 2190-6807. URL: https://doi.org/10.4230/OASIcs.ATMOS.2008.1588.
  26. M. A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm. Technical Report 94-61, TU Delft, 1994. Google Scholar
  27. J. Pätzold and A. Schöbel. A Matching Approach for Periodic Timetabling. In M. Goerigk and R. Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 1:1-1:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISSN: 2190-6807. URL: https://doi.org/10.4230/OASIcs.ATMOS.2016.1.
  28. E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier, and K. Tierney. A survey of methods for automated algorithm configuration, 2022. URL: https://doi.org/10.48550/ARXIV.2202.01651.
  29. P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2(4):550-581, 1989. URL: https://doi.org/10.1137/0402049.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail