Circuit Lower Bounds for MCSP from Local Pseudorandom Generators

Authors Mahdi Cheraghchi , Valentine Kabanets, Zhenjian Lu, Dimitrios Myrisiotis



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2019.39.pdf
  • Filesize: 0.62 MB
  • 14 pages

Document Identifiers

Author Details

Mahdi Cheraghchi
  • Department of Computing, Imperial College London, London, UK
Valentine Kabanets
  • School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
Zhenjian Lu
  • School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
Dimitrios Myrisiotis
  • Department of Computing, Imperial College London, London, UK

Acknowledgements

We thank the anonymous ICALP'19 reviewers for their excellent comments.

Cite As Get BibTex

Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit Lower Bounds for MCSP from Local Pseudorandom Generators. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.ICALP.2019.39

Abstract

The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can be computed by a Boolean circuit of size at most theta, for a given parameter theta. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean function, can be computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that almost match the best-known lower bounds against several circuit models. Specifically, we show that computing MCSP, on functions with a truth table of length N, requires 
- N^{3-o(1)}-size de Morgan formulas, improving the recent N^{2-o(1)} lower bound by Hirahara and Santhanam (CCC, 2017), 
- N^{2-o(1)}-size formulas over an arbitrary basis or general branching programs (no non-trivial lower bound was known for MCSP against these models), and 
- 2^{Omega (N^{1/(d+2.01)})}-size depth-d AC^0 circuits, improving the superpolynomial lower bound by Allender et al. (SICOMP, 2006). 

The AC^0 lower bound stated above matches the best-known AC^0 lower bound (for PARITY) up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or DNFs), we get an almost optimal lower bound of 2^{N^{1-o(1)}} for MCSP.

Subject Classification

ACM Subject Classification
  • Theory of computation → Circuit complexity
  • Theory of computation → Pseudorandomness and derandomization
Keywords
  • minimum circuit size problem (MCSP)
  • circuit lower bounds
  • pseudorandom generators (PRGs)
  • local PRGs
  • de Morgan formulas
  • branching programs
  • constant depth circuits

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Miklós Ajtai and Avi Wigderson. Deterministic Simulation of Probabilistic Constant Depth Circuits. Advances in Computing Research, 5:199-222, 1989. URL: http://dx.doi.org/10.1109/SFCS.1985.19.
  2. Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger. Power from Random Strings. SIAM J. Comput., 35(6):1467-1493, 2006. URL: http://dx.doi.org/10.1137/050628994.
  3. Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom Generators from Polarizing Random Walks. In CCC, pages 1:1-1:21, 2018. URL: https://eccc.weizmann.ac.il/report/2018/015/.
  4. Mary Cryan and Peter Bro Miltersen. On Pseudorandom Generators in NC⁰. In Mathematical Foundations of Computer Science 2001, 26th International Symposium, MFCS 2001 Marianske Lazne, Czech Republic, August 27-31, 2001, Proceedings, pages 272-284, 2001. URL: http://dx.doi.org/10.1007/3-540-44683-4_24.
  5. Irit Dinur and Or Meir. Toward the KRW Composition Conjecture: Cubic Formula Lower Bounds via Communication Complexity. Computational Complexity, 27(3):375-462, 2018. URL: http://dx.doi.org/10.1007/s00037-017-0159-x.
  6. Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In STOC, 1986. https://doi.org/10.1145/12130.12132. URL: http://dx.doi.org/10.1145/12130.12132.
  7. Johan Håstad. The Shrinkage Exponent of de Morgan Formulas is 2. SIAM J. Comput., 27(1):48-64, 1998. URL: http://dx.doi.org/10.1137/S0097539794261556.
  8. Shuichi Hirahara. Non-Black-Box Worst-Case to Average-Case Reductions within NP. In FOCS, pages 247-258, 2018. URL: https://eccc.weizmann.ac.il/report/2018/138/.
  9. Shuichi Hirahara and Rahul Santhanam. On the Average-Case Complexity of MCSP and Its Variants. In CCC, pages 7:1-7:20, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2017.7.
  10. Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from Shrinkage. In FOCS, pages 111-119, 2012. URL: https://eccc.weizmann.ac.il/report/2012/057/.
  11. Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In STOC, pages 73-79, 2000. URL: https://eccc.weizmann.ac.il/report/1999/045/.
  12. E.I. Nechiporuk. On a Boolean function. Doklady Akademii Nauk SSSR, 169(4):765-766, 1966. English translation in Soviet Mathematics Doklady. Google Scholar
  13. Noam Nisan and David Zuckerman. Randomness is Linear in Space. J. Comput. Syst. Sci., 52(1):43-52, 1996. URL: http://dx.doi.org/10.1006/jcss.1996.0004.
  14. Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-the-art lower bounds. Electronic Colloquium on Computational Complexity (ECCC), 25:158, 2018. URL: https://eccc.weizmann.ac.il/report/2018/158/.
  15. Igor Carboni Oliveira and Rahul Santhanam. Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness. In CCC, pages 18:1-18:49, 2017. URL: https://eccc.weizmann.ac.il/report/2016/197/.
  16. Igor Carboni Oliveira and Rahul Santhanam. Hardness Magnification for Natural Problems. In FOCS, pages 65-76, 2018. URL: https://eccc.weizmann.ac.il/report/2018/139/.
  17. Claude E. Shannon. The Synthesis of Two-terminal Switching Circuits. Bell Systems Technical Journal, 28:59-98, 1949. URL: http://dx.doi.org/10.1002/j.1538-7305.1949.tb03624.x.
  18. Avishay Tal. Shrinkage of De Morgan Formulae by Spectral Techniques. In FOCS, pages 551-560, 2014. URL: https://eccc.weizmann.ac.il/report/2014/048/.
  19. Avishay Tal. Formula lower bounds via the quantum method. In STOC, pages 1256-1268, 2017. URL: http://dx.doi.org/10.1145/3055399.3055472.
  20. Boris A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms. IEEE Annals of the History of Computing, 6(4):384-400, 1984. URL: http://dx.doi.org/10.1109/MAHC.1984.10036.
  21. Luca Trevisan and Tongke Xue. A Derandomized Switching Lemma and an Improved Derandomization of AC⁰. In CCC, pages 242-247, 2013. URL: https://eccc.weizmann.ac.il/report/2012/116/.
  22. Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL: http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail