LIPIcs.ICALP.2020.126.pdf
- Filesize: 0.58 MB
- 18 pages
We prove new complexity results for computational problems in certain wreath products of groups and (as an application) for free solvable groups. For a finitely generated group we study the so-called power word problem (does a given expression u₁^{k₁} … u_d^{k_d}, where u₁, …, u_d are words over the group generators and k₁, …, k_d are binary encoded integers, evaluate to the group identity?) and knapsack problem (does a given equation u₁^{x₁} … u_d^{x_d} = v, where u₁, …, u_d,v are words over the group generators and x₁,…,x_d are variables, have a solution in the natural numbers). We prove that the power word problem for wreath products of the form G ≀ ℤ with G nilpotent and iterated wreath products of free abelian groups belongs to TC⁰. As an application of the latter, the power word problem for free solvable groups is in TC⁰. On the other hand we show that for wreath products G ≀ ℤ, where G is a so called uniformly strongly efficiently non-solvable group (which form a large subclass of non-solvable groups), the power word problem is coNP-hard. For the knapsack problem we show NP-completeness for iterated wreath products of free abelian groups and hence free solvable groups. Moreover, the knapsack problem for every wreath product G ≀ ℤ, where G is uniformly efficiently non-solvable, is Σ₂^p-hard.
Feedback for Dagstuhl Publishing