Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Cho, Da-Jung; Függer, Matthias; Hopper, Corbin; Kushwaha, Manish; Nowak, Thomas; Soubeyran, Quentin License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
when quoting this document, please refer to the following
URN: urn:nbn:de:0030-drops-130856

; ; ; ; ;

Distributed Computation with Continual Population Growth



Computing with synthetically engineered bacteria is a vibrant and active field with numerous applications in bio-production, bio-sensing, and medicine. Motivated by the lack of robustness and by resource limitation inside single cells, distributed approaches with communication among bacteria have recently gained in interest. In this paper, we focus on the problem of population growth happening concurrently, and possibly interfering, with the desired bio-computation. Specifically, we present a fast protocol in systems with continuous population growth for the majority consensus problem and prove that it correctly identifies the initial majority among two inputs with high probability if the initial difference is Ω(√{nlog n}) where n is the total initial population. We also present a fast protocol that correctly computes the NAND of two inputs with high probability. We demonstrate that combining the NAND gate protocol with the continuous-growth majority consensus protocol, using the latter as an amplifier, it is possible to implement circuits computing arbitrary Boolean functions.

BibTeX - Entry

  author =	{Da-Jung Cho and Matthias F{\"u}gger and Corbin Hopper and Manish Kushwaha and Thomas Nowak and Quentin Soubeyran},
  title =	{{Distributed Computation with Continual Population Growth}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Hagit Attiya},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-130856},
  doi =		{10.4230/LIPIcs.DISC.2020.7},
  annote =	{Keywords: microbiological circuits, majority consensus, birth-death processes}

Keywords: microbiological circuits, majority consensus, birth-death processes
Seminar: 34th International Symposium on Distributed Computing (DISC 2020)
Issue date: 2020
Date of publication: 07.10.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI