when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-160096
URL:

; ; ;

Tiling with Squares and Packing Dominos in Polynomial Time

 pdf-format:

Abstract

A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container P. We give polynomial-time algorithms for deciding if P can be tiled with k× k squares for any fixed k which can be part of the input (that is, deciding if P is the union of a set of non-overlapping k× k squares) and for packing P with a maximum number of non-overlapping and axis-parallel 2× 1 dominos, allowing rotations by 90^∘. As packing is more general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2× 1 dominos.
These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of 2× 2 squares is known to be NP-hard [J. Algorithms 1990]. For our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with running times polynomial in the area or perimeter of P. However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple O(nlog n)-time algorithm for tiling with squares, where n is the number of corners of P. We then give a more involved algorithm that reduces the problems of packing and tiling with dominos to finding a maximum and perfect matching in a graph with O(n³) vertices. This leads to algorithms with running times O(n³(log³ n)/(log²log n)) and O(n³(log² n)/(log log n)), respectively.

BibTeX - Entry

```@InProceedings{aamand_et_al:LIPIcs.SoCG.2022.1,
author =	{Aamand, Anders and Abrahamsen, Mikkel and Ahle, Thomas and Rasmussen, Peter M. R.},
title =	{{Tiling with Squares and Packing Dominos in Polynomial Time}},
booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
pages =	{1:1--1:17},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-227-3},
ISSN =	{1868-8969},
year =	{2022},
volume =	{224},
editor =	{Goaoc, Xavier and Kerber, Michael},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},